betabinomial {CUB} | R Documentation |
Beta-Binomial probabilities of ordinal responses, with feeling and overdispersion parameters for each observation
Description
Compute the Beta-Binomial probabilities of ordinal responses, given feeling and overdispersion parameters for each observation.
Usage
betabinomial(m,ordinal,csivett,phivett)
Arguments
m |
Number of ordinal categories |
ordinal |
Vector of ordinal responses. Missing values are not allowed: they should be preliminarily deleted or imputed |
csivett |
Vector of feeling parameters of the Beta-Binomial distribution for given ordinal responses |
phivett |
Vector of overdispersion parameters of the Beta-Binomial distribution for given ordinal responses |
Details
The Beta-Binomial distribution is the Binomial distribution in which the probability of success at each trial is random and follows the Beta distribution. It is frequently used in Bayesian statistics, empirical Bayes methods and classical statistics as an overdispersed binomial distribution.
Value
A vector of the same length as ordinal, containing the Beta-Binomial probabilities of each observation, for the corresponding feeling and overdispersion parameters.
References
Iannario, M. (2014). Modelling Uncertainty and Overdispersion in Ordinal Data,
Communications in Statistics - Theory and Methods, 43, 771–786
Piccolo D. (2015). Inferential issues for CUBE models with covariates.
Communications in Statistics - Theory and Methods, 44(23), 771–786.
See Also
Examples
data(relgoods)
m<-10
ordinal<-relgoods$Tv
age<-2014-relgoods$BirthYear
no_na<-na.omit(cbind(ordinal,age))
ordinal<-no_na[,1]; age<-no_na[,2]
lage<-log(age)-mean(log(age))
gama<-c(-0.6, -0.3)
csivett<-logis(lage,gama)
alpha<-c(-2.3,0.92);
ZZ<-cbind(1,lage)
phivett<-exp(ZZ%*%alpha)
pr<-betabinomial(m,ordinal,csivett,phivett)
plot(density(pr))