BEI_EMWeighting {CSTools} | R Documentation |
Computing the weighted ensemble means for SFSs.
Description
This function implements the computation to obtain the weighted ensemble means for SFSs using a normalized weights array,
Usage
BEI_EMWeighting(var_exp, aweights, time_dim_name = "time", memb_dim = "member")
Arguments
var_exp |
Variable (e.g. precipitation, temperature, NAO index) array from a SFS with at least dimensions (time, member) for a spatially aggregated variable or dimensions (time, member, lat, lon) for a spatial variable, as 'time' the spatial dimension by default. |
aweights |
Normalized weights array with at least dimensions (time, member), when 'time' is the temporal dimension as default. |
time_dim_name |
A character string indicating the name of the temporal dimension, by default 'time'. |
memb_dim |
A character string indicating the name of the member dimension, by default 'member'. |
Value
BEI_EMWeighting() returns an array with at least one or three dimensions depending if the variable is spatially aggregated variable (as e.g. NAO index)(time) or it is spatial variable (as e.g. precipitation or temperature) (time, lat, lon), containing the ensemble means computing with weighted members.
Author(s)
Eroteida Sanchez-Garcia - AEMET, esanchezg@aemet.es
References
Regionally improved seasonal forecast of precipitation through Best estimation of winter NAO, Sanchez-Garcia, E. et al., Adv. Sci. Res., 16, 165174, 2019, doi: 10.5194/asr-16-165-2019
Examples
# Example 1
var_exp <- 1 : (2 * 3 * 4)
dim(var_exp) <- c(time = 2, dataset = 3, member = 4)
aweights <- runif(24, min = 0.001, max = 0.999)
dim(aweights) <- c(time = 2, dataset = 3, member = 4)
res <- BEI_EMWeighting(var_exp, aweights)
# Example 2
var_exp <- 1 : (2 * 4 * 2 * 3)
dim(var_exp) <- c(time = 2, member = 4, lat = 2, lon = 3)
aweights <- c(0.2, 0.1, 0.3, 0.4, 0.1, 0.2, 0.4, 0.3)
dim(aweights) <- c(time = 2, member = 4)
res <- BEI_EMWeighting(var_exp, aweights)