predict.cv.ProxGrad {CPGLIB} | R Documentation |
Predictions for cv.ProxGrad Object
Description
predict.cv.ProxGrad
returns the predictions for a ProxGrad object.
Usage
## S3 method for class 'cv.ProxGrad'
predict(object, newx, type = c("prob", "class")[1], ...)
Arguments
object |
An object of class cv.ProxGrad. |
newx |
New data for predictions. |
type |
The type of predictions for binary response. Options are "prob" (default) and "class". |
... |
Additional arguments for compatibility. |
Value
The predictions for the cv.ProxGrad object.
Author(s)
Anthony-Alexander Christidis, anthony.christidis@stat.ubc.ca
See Also
Examples
# Data simulation
set.seed(1)
n <- 50
N <- 2000
p <- 1000
beta.active <- c(abs(runif(p, 0, 1/2))*(-1)^rbinom(p, 1, 0.3))
# Parameters
p.active <- 100
beta <- c(beta.active[1:p.active], rep(0, p-p.active))
Sigma <- matrix(0, p, p)
Sigma[1:p.active, 1:p.active] <- 0.5
diag(Sigma) <- 1
# Train data
x.train <- mvnfast::rmvn(n, mu = rep(0, p), sigma = Sigma)
prob.train <- exp(x.train %*% beta)/
(1+exp(x.train %*% beta))
y.train <- rbinom(n, 1, prob.train)
# Test data
x.test <- mvnfast::rmvn(N, mu = rep(0, p), sigma = Sigma)
prob.test <- exp(x.test %*% beta)/
(1+exp(x.test %*% beta))
y.test <- rbinom(N, 1, prob.test)
# CV ProxGrad - Single Group
proxgrad.out <- cv.ProxGrad(x.train, y.train,
glm_type = "Logistic",
include_intercept = TRUE,
alpha_s = 3/4,
n_lambda_sparsity = 100,
tolerance = 1e-5, max_iter = 1e5)
# Predictions
proxgrad.prob <- predict(proxgrad.out, newx = x.test, type = "prob")
proxgrad.class <- predict(proxgrad.out, newx = x.test, type = "class")
plot(prob.test, proxgrad.prob, pch = 20)
abline(h = 0.5,v = 0.5)
mean((prob.test-proxgrad.prob)^2)
mean(abs(y.test-proxgrad.class))
[Package CPGLIB version 1.1.1 Index]