predict.CPGLIB {CPGLIB} | R Documentation |
Predictions for CPGLIB Object
Description
predict.CPGLIB
returns the predictions for a CPGLIB object.
Usage
## S3 method for class 'CPGLIB'
predict(
object,
newx,
groups = NULL,
ensemble_type = c("Model-Avg", "Coef-Avg", "Weighted-Prob", "Majority-Vote")[1],
class_type = c("prob", "class")[1],
...
)
Arguments
object |
An object of class CPGLIB. |
newx |
New data for predictions. |
groups |
The groups in the ensemble for the predictions. Default is all of the groups in the ensemble. |
ensemble_type |
The type of ensembling function for the models. Options are "Model-Avg", "Coef-Avg" or "Weighted-Prob" for classifications predictions. Default is "Model-Avg". |
class_type |
The type of predictions for classification. Options are "prob" and "class". Default is "prob". |
... |
Additional arguments for compatibility. |
Value
The predictions for the CPGLIB object.
Author(s)
Anthony-Alexander Christidis, anthony.christidis@stat.ubc.ca
See Also
Examples
# Data simulation
set.seed(1)
n <- 50
N <- 2000
p <- 300
beta.active <- c(abs(runif(p, 0, 1/2))*(-1)^rbinom(p, 1, 0.3))
# Parameters
p.active <- 150
beta <- c(beta.active[1:p.active], rep(0, p-p.active))
Sigma <- matrix(0, p, p)
Sigma[1:p.active, 1:p.active] <- 0.5
diag(Sigma) <- 1
# Train data
x.train <- mvnfast::rmvn(n, mu = rep(0, p), sigma = Sigma)
prob.train <- exp(x.train %*% beta)/
(1+exp(x.train %*% beta))
y.train <- rbinom(n, 1, prob.train)
# Test data
x.test <- mvnfast::rmvn(N, mu = rep(0, p), sigma = Sigma)
prob.test <- exp(x.test %*% beta)/
(1+exp(x.test %*% beta))
y.test <- rbinom(N, 1, prob.test)
# CPGLIB - Multiple Groups
cpg.out <- cpg(x.train, y.train,
glm_type = "Logistic",
G = 5, include_intercept = TRUE,
alpha_s = 3/4, alpha_d = 1,
lambda_sparsity = 0.01, lambda_diversity = 1,
tolerance = 1e-5, max_iter = 1e5)
# Predictions
cpg.prob <- predict(cpg.out, newx = x.test, type = "prob",
groups = 1:cpg.out$G, ensemble_type = "Model-Avg")
cpg.class <- predict(cpg.out, newx = x.test, type = "prob",
groups = 1:cpg.out$G, ensemble_type = "Model-Avg")
plot(prob.test, cpg.prob, pch=20)
abline(h=0.5,v=0.5)
mean((prob.test-cpg.prob)^2)
mean(abs(y.test-cpg.class))
[Package CPGLIB version 1.1.1 Index]