| cv.cpg {CPGLIB} | R Documentation | 
Competing Proximal Gradients Library for Ensembles of Generalized Linear Models - Cross-Validation
Description
cv.cpg computes and cross-validates the coefficients for ensembles of generalized linear models via competing proximal gradients.
Usage
cv.cpg(
  x,
  y,
  glm_type = c("Linear", "Logistic")[1],
  G = 5,
  full_diversity = FALSE,
  include_intercept = TRUE,
  alpha_s = 3/4,
  alpha_d = 1,
  n_lambda_sparsity = 100,
  n_lambda_diversity = 100,
  tolerance = 1e-08,
  max_iter = 1e+05,
  n_folds = 10,
  n_threads = 1
)
Arguments
x | 
 Design matrix.  | 
y | 
 Response vector.  | 
glm_type | 
 Description of the error distribution and link function to be used for the model. Must be one of "Linear" or "Logistic". Default is "Linear".  | 
G | 
 Number of groups in the ensemble.  | 
full_diversity | 
 Argument to determine if the overlap between the models should be zero. Default is FALSE.  | 
include_intercept | 
 Argument to determine whether there is an intercept. Default is TRUE.  | 
alpha_s | 
 Sparsity mixing parmeter. Default is 3/4.  | 
alpha_d | 
 Diversity mixing parameter. Default is 1.  | 
n_lambda_sparsity | 
 Number of candidates for sparsity tuning parameter. Default is 100.  | 
n_lambda_diversity | 
 Number of candidates for diveristy tuning parameter. Default is 100.  | 
tolerance | 
 Convergence criteria for the coefficients. Default is 1e-8.  | 
max_iter | 
 Maximum number of iterations in the algorithm. Default is 1e5.  | 
n_folds | 
 Number of cross-validation folds. Default is 10.  | 
n_threads | 
 Number of threads. Default is a single thread.  | 
Value
An object of class cv.cpg
Author(s)
Anthony-Alexander Christidis, anthony.christidis@stat.ubc.ca
See Also
coef.cv.CPGLIB, predict.cv.CPGLIB
Examples
# Data simulation
set.seed(1)
n <- 50
N <- 2000
p <- 300
beta.active <- c(abs(runif(p, 0, 1/2))*(-1)^rbinom(p, 1, 0.3))
# Parameters
p.active <- 150
beta <- c(beta.active[1:p.active], rep(0, p-p.active))
Sigma <- matrix(0, p, p)
Sigma[1:p.active, 1:p.active] <- 0.5
diag(Sigma) <- 1
# Train data
x.train <- mvnfast::rmvn(n, mu = rep(0, p), sigma = Sigma) 
prob.train <- exp(x.train %*% beta)/
              (1+exp(x.train %*% beta))
y.train <- rbinom(n, 1, prob.train)
# Test data
x.test <- mvnfast::rmvn(N, mu = rep(0, p), sigma = Sigma)
prob.test <- exp(x.test %*% beta)/
             (1+exp(x.test %*% beta))
y.test <- rbinom(N, 1, prob.test)
# CV CPGLIB - Multiple Groups
cpg.out <- cv.cpg(x.train, y.train,
                  glm_type = "Logistic",
                  G = 5, include_intercept = TRUE,
                  alpha_s = 3/4, alpha_d = 1,
                  n_lambda_sparsity = 100, n_lambda_diversity = 100,
                  tolerance = 1e-5, max_iter = 1e5)
# Predictions
cpg.prob <- predict(cpg.out, newx = x.test, type = "prob", 
                    groups = 1:cpg.out$G, ensemble_type = "Model-Avg")
cpg.class <- predict(cpg.out, newx = x.test, type = "class", 
                     groups = 1:cpg.out$G, ensemble_type = "Model-Avg")
plot(prob.test, cpg.prob, pch = 20)
abline(h = 0.5,v = 0.5)
mean((prob.test-cpg.prob)^2)
mean(abs(y.test-cpg.class))