Adjacent vertex-distinguishing edge coloring of graphs with maximum degree Δ H Hocquard, M Montassier Journal of Combinatorial Optimization 26 (1), 152-160, 2013 | 43 | 2013 |

Adjacent vertex-distinguishing edge coloring of graphs with maximum degree at least five H Hocquard, M Montassier Electronic Notes in Discrete Mathematics 38, 457-462, 2011 | 28 | 2011 |

Strong edge-colouring of sparse planar graphs J Bensmail, A Harutyunyan, H Hocquard, P Valicov Discrete Applied Mathematics 179, 229-234, 2014 | 27 | 2014 |

On strong edge-colouring of subcubic graphs H Hocquard, M Montassier, A Raspaud, P Valicov Discrete Applied Mathematics 161 (16-17), 2467-2479, 2013 | 25 | 2013 |

Strong edge-colouring and induced matchings H Hocquard, P Ochem, P Valicov Information Processing Letters 113 (19-21), 836-843, 2013 | 23 | 2013 |

Adjacent vertex-distinguishing edge coloring of graphs M Bonamy, N Bousquet, H Hocquard The Seventh European Conference on Combinatorics, Graph Theory and …, 2013 | 17 | 2013 |

Strong edge colouring of subcubic graphs H Hocquard, P Valicov Discrete Applied Mathematics 159 (15), 1650-1657, 2011 | 17 | 2011 |

Every planar graph without cycles of lengths 4 to 12 is acyclically 3-choosable H Hocquard, M Montassier Information processing letters 109 (21-22), 1193-1196, 2009 | 14 | 2009 |

Graphs with maximum degree 6 are acyclically 11-colorable H Hocquard Information processing letters 111 (15), 748-753, 2011 | 12 | 2011 |

Edge weights and vertex colours: minimizing sum count O Baudon, J Bensmail, H Hocquard, M Senhaji, E Sopena Discrete Applied Mathematics 270, 13-24, 2019 | 7 | 2019 |

A general decomposition theory for the 1-2-3 Conjecture and locally irregular decompositions M Woźniak, E Sopena, M Senhaji, J Przybyło, H Hocquard, T Davot, ... Discrete Mathematics & Theoretical Computer Science 21, 2019 | 7 | 2019 |

On locally irregular decompositions of subcubic graphs O Baudon, J Bensmail, H Hocquard, M Senhaji, E Sopena Opuscula Mathematica 38 (6), 2018 | 6 | 2018 |

On the neighbour sum distinguishing index of graphs with bounded maximum average degree H Hocquard, J Przybyło Graphs and Combinatorics 33 (6), 1459-1471, 2017 | 5 | 2017 |

Incidence coloring of graphs with high maximum average degree M Bonamy, H Hocquard, S Kerdjoudj, A Raspaud Discrete Applied Mathematics 227, 29-43, 2017 | 5 | 2017 |

Strong edge coloring sparse graphs J Bensmail, M Bonamy, H Hocquard Electronic Notes in Discrete Mathematics 49, 773-778, 2015 | 5 | 2015 |

Acyclic coloring of graphs with maximum degree bounded Y Dieng, H Hocquard, R Naserasr Proc. of 8FCC, 68, 2010 | 5 | 2010 |

Further evidence towards the multiplicative 1-2-3 Conjecture J Bensmail, H Hocquard, D Lajou, É Sopena Discrete Applied Mathematics 307, 135-144, 2022 | 3 | 2022 |

A connected version of the graph coloring game C Charpentier, H Hocquard, É Sopena, X Zhu Discrete Applied Mathematics 283, 744-750, 2020 | 3 | 2020 |

Incidence coloring of planar graphs without adjacent small cycles H Hocquard, S Kerdjoudj, A Raspaud Journal of Combinatorics 8 (1), 167-187, 2017 | 3 | 2017 |

From light edges to strong edge-colouring of 1-planar graphs J Bensmail, F Dross, H Hocquard, E Sopena Discrete Mathematics and Theoretical Computer Science 22 (2), 2020 | 2 | 2020 |