misclassification_prob {COMMA} | R Documentation |
Compute Conditional Probability of Observed Mediator Given True Mediator, for Every Subject
Description
Compute the conditional probability of observing mediator M^* \in \{1, 2 \}
given
the latent true mediator M \in \{1, 2 \}
as
\frac{\text{exp}\{\gamma_{kj0} + \gamma_{kjZ} Z_i\}}{1 + \text{exp}\{\gamma_{kj0} + \gamma_{kjZ} Z_i\}}
for each of the i = 1, \dots,
n
subjects.
Usage
misclassification_prob(gamma_matrix, z_matrix)
Arguments
gamma_matrix |
A numeric matrix of estimated regression parameters for the
observation mechanism, |
z_matrix |
A numeric matrix of covariates in the observation mechanism.
|
Value
misclassification_prob
returns a dataframe containing four columns.
The first column, Subject
, represents the subject ID, from 1
to n
,
where n
is the sample size, or equivalently, the number of rows in z_matrix
.
The second column, M
, represents a true, latent mediator category M \in \{1, 2 \}
.
The third column, Mstar
, represents an observed outcome category M^* \in \{1, 2 \}
.
The last column, Probability
, is the value of the equation
\frac{\text{exp}\{\gamma_{kj0} + \gamma_{kjZ} Z_i\}}{1 + \text{exp}\{\gamma_{kj0} + \gamma_{kjZ} Z_i\}}
computed for each subject, observed mediator category, and true, latent mediator category.
Examples
set.seed(123)
sample_size <- 1000
cov1 <- rnorm(sample_size)
cov2 <- rnorm(sample_size, 1, 2)
z_matrix <- matrix(c(cov1, cov2), nrow = sample_size, byrow = FALSE)
estimated_gammas <- matrix(c(1, -1, .5, .2, -.6, 1.5), ncol = 2)
P_Ystar_Y <- misclassification_prob(estimated_gammas, z_matrix)
head(P_Ystar_Y)