acfParams {COMIX} | R Documentation |
The function computes (and by default plots) estimates of the autocovariance or autocorrelation function for the different parameters of the model. This is a wrapper for coda::acf.
Description
The function computes (and by default plots) estimates of the autocovariance or autocorrelation function for the different parameters of the model. This is a wrapper for coda::acf.
Usage
acfParams(
res,
params = c("w", "xi", "xi0", "psi", "G", "E", "eta"),
only_non_trivial_clusters = TRUE,
lag.max = NULL,
type = c("correlation", "covariance", "partial"),
plot = TRUE,
...
)
Arguments
res |
An object of class |
params |
A character vector naming the parameters to compute and plot the autocorrelation plots for. |
only_non_trivial_clusters |
Logical, if |
lag.max |
maximum lag at which to calculate the autocorrelation. See more details at ?acf. |
type |
Character string giving the type of autocorrelation to be computed. See more details at ?acf. |
plot |
Logical. If |
... |
Other arguments passed to |
Value
An acfParamsCOMIX
object which is a named list,
with a named element for each requested parameter. Each element is
an object of class acf
(from the coda
package).
#' @examples
library(COMIX)
# Number of observations for each sample (row) and cluster (column):
njk <-
matrix(
c(
150, 300,
250, 200
),
nrow = 2,
byrow = TRUE
)
# Dimension of data: p <- 3
# Scale and skew parameters for first cluster: Sigma1 <- matrix(0.5, nrow = p, ncol = p) + diag(0.5, nrow = p) alpha1 <- rep(0, p) alpha1[1] <- -5 # location parameter for first cluster in first sample: xi11 <- rep(0, p) # location parameter for first cluster in second sample (aligned with first): xi21 <- rep(0, p)
# Scale and skew parameters for second cluster: Sigma2 <- matrix(-1/3, nrow = p, ncol = p) + diag(1 + 1/3, nrow = p) alpha2 <- rep(0, p) alpha2[2] <- 5 # location parameter for second cluster in first sample: xi12 <- rep(3, p) # location parameter for second cluster in second sample (misaligned with first): xi22 <- rep(4, p)
# Sample data: set.seed(1) Y <- rbind( sn::rmsn(njk[1, 1], xi = xi11, Omega = Sigma1, alpha = alpha1), sn::rmsn(njk[1, 2], xi = xi12, Omega = Sigma2, alpha = alpha2), sn::rmsn(njk[2, 1], xi = xi21, Omega = Sigma1, alpha = alpha1), sn::rmsn(njk[2, 2], xi = xi22, Omega = Sigma2, alpha = alpha2) )
C <- c(rep(1, rowSums(njk)[1]), rep(2, rowSums(njk)[2]))
prior <- list(zeta = 1, K = 10) pmc <- list(naprt = 5, nburn = 200, nsave = 200) # Reasonable usage pmc <- list(naprt = 5, nburn = 2, nsave = 5) # Minimal usage for documentation # Fit the model: res <- comix(Y, C, pmc = pmc, prior = prior)
# Relabel to resolve potential label switching issues: res_relab <- relabelChain(res) effssz <- effectiveSampleSize(res_relab, "w") # Or: tidy_chain <- tidyChain(res_relab, "w") acf_w <- acfParams(tidy_chain, "w")
# (see vignette for a more detailed example)