q_beta_f {COMBO} | R Documentation |
M-Step Expected Log-Likelihood with respect to Beta
Description
Objective function of the form:
Q_\beta = \sum_{i = 1}^N \Bigl[ \sum_{j = 0}^1 w_{ij} \text{log} \{ \pi_{ij} \}\Bigr]
.
Used to obtain estimates of \beta
parameters.
Usage
q_beta_f(beta, X, w_mat, sample_size, n_cat)
Arguments
beta |
A numeric vector of regression parameters for the
|
X |
A numeric design matrix. |
w_mat |
Matrix of E-step weights obtained from |
sample_size |
An integer value specifying the number of observations in the sample.
This value should be equal to the number of rows of the design matrix, |
n_cat |
The number of categorical values that the true outcome, |
Value
q_beta_f
returns the negative value of the expected log-likelihood function,
Q_\beta = \sum_{i = 1}^N \Bigl[ \sum_{j = 1}^2 w_{ij} \text{log} \{ \pi_{ij} \}\Bigr]
,
at the provided inputs.
[Package COMBO version 1.1.0 Index]