loglik_2stage {COMBO} | R Documentation |
Expected Complete Data Log-Likelihood Function for Estimation of the Two-Stage Misclassification Model
Description
Expected Complete Data Log-Likelihood Function for Estimation of the Two-Stage Misclassification Model
Usage
loglik_2stage(
param_current,
obs_Ystar_matrix,
obs_Ytilde_matrix,
X,
Z,
V,
sample_size,
n_cat
)
Arguments
param_current |
A numeric vector of regression parameters, in the order
|
obs_Ystar_matrix |
A numeric matrix of indicator variables (0, 1) for the first-stage observed
outcome |
obs_Ytilde_matrix |
A numeric matrix of indicator variables (0, 1) for the second-stage observed
outcome |
X |
A numeric design matrix for the true outcome mechanism. |
Z |
A numeric design matrix for the first-stage observation mechanism. |
V |
A numeric design matrix for the second-stage observation mechanism. |
sample_size |
An integer value specifying the number of observations in the sample.
This value should be equal to the number of rows of the design matrices, |
n_cat |
The number of categorical values that the true outcome, |
Value
loglik_2stage
returns the negative value of the expected log-likelihood function,
Q = \sum_{i = 1}^N \Bigl[ \sum_{j = 1}^2 w_{ij} \text{log} \{ \pi_{ij} \} + \sum_{j = 1}^2 \sum_{k = 1}^2 w_{ij} y^*_{ik} \text{log} \{ \pi^*_{ikj} \} +
\sum_{j = 1}^2 \sum_{k = 1}^2 \sum_{\ell = 1}^2 w_{ij} y^*_{ik} \tilde{y}_{i \ell} \text{log} \{ \tilde{\pi}_{i \ell kj} \}\Bigr]
,
at the provided inputs.