loglik {COMBO} | R Documentation |
Expected Complete Data Log-Likelihood Function for Estimation of the Misclassification Model
Description
Expected Complete Data Log-Likelihood Function for Estimation of the Misclassification Model
Usage
loglik(param_current, obs_Y_matrix, X, Z, sample_size, n_cat)
Arguments
param_current |
A numeric vector of regression parameters, in the order
|
obs_Y_matrix |
A numeric matrix of indicator variables (0, 1) for the observed
outcome |
X |
A numeric design matrix for the true outcome mechanism. |
Z |
A numeric design matrix for the observation mechanism. |
sample_size |
Integer value specifying the number of observations in the sample.
This value should be equal to the number of rows of the design matrix, |
n_cat |
The number of categorical values that the true outcome, |
Value
loglik
returns the negative value of the expected log-likelihood function,
Q = \sum_{i = 1}^N \Bigl[ \sum_{j = 1}^2 w_{ij} \text{log} \{ \pi_{ij} \} + \sum_{j = 1}^2 \sum_{k = 1}^2 w_{ij} y^*_{ik} \text{log} \{ \pi^*_{ikj} \}\Bigr]
,
at the provided inputs.