gendata_simu {COAP} | R Documentation |
Generate simulated data
Description
Generate simulated data from covariate-augmented Poisson factor models
Usage
gendata_simu(
seed = 1,
n = 300,
p = 50,
d = 20,
q = 6,
rank0 = 3,
rho = c(1.5, 1),
sigma2_eps = 0.1,
seed.beta = 1
)
Arguments
seed |
a postive integer, the random seed for reproducibility of data generation process. |
n |
a postive integer, specify the sample size. |
p |
a postive integer, specify the dimension of count variables. |
d |
a postive integer, specify the dimension of covariate matrix. |
q |
a postive integer, specify the number of factors. |
rank0 |
a postive integer, specify the rank of the coefficient matrix. |
rho |
a numeric vector with length 2 and positive elements, specify the signal strength of regression coefficient and loading matrix, respectively. |
sigma2_eps |
a positive real, the variance of overdispersion error. |
seed.beta |
a postive integer, the random seed for reproducibility of data generation process by fixing the regression coefficient matrix beta. |
Details
None
Value
return a list including the following components: (1) X, the high-dimensional count matrix; (2) Z, the high-dimensional covriate matrix; (3) bbeta0, the low-rank large coefficient matrix; (4) B0, the loading matrix; (5) H0, the factor matrix; (6) rank: the true rank of bbeta0; (7) q: the true number of factors.
References
None
See Also
Examples
n <- 300; p <- 100
d <- 20; q <- 6; r <- 3
datlist <- gendata_simu(n=n, p=p, d=20, q=q, rank0=r)
str(datlist)