| postProcessLinRegMatrix {CNVScope} | R Documentation | 
Postprocess linear regression matrix.
Description
Takes a linear regression matrix and sets infinites to a finite value, and changes the sign to match the sign of the correlation for each value.
Usage
postProcessLinRegMatrix(
  input_matrix,
  LM_mat,
  cor_type = "pearson",
  inf_replacement_val = 300
)
Arguments
| input_matrix | The input matrix, which consists of bins and samples (no LM or correlation has been done on the segmentation values) | 
| LM_mat | The linear regression matrix, with rows and columns consisting of bins and the values being the negative log p-value between them. | 
| cor_type | The correlation type ("pearson" (linear), "spearman" (rank), "kendall"(also rank-based)). Rank correlations capture nonlinear relationships as well as linear. Passed to stats::cor's method parameter. | 
| inf_replacement_val | the value for which infinites are replaced, by default 300. | 
Value
The output matrix, or if using slurm, the slurm job object (which should be saved as an rds file and reloaded when creating the output matrix).
Examples
inputmat<-matrix(runif(15),nrow=3)
colnames(inputmat)<-c("chr2_1_1000","chr2_1001_2000","chr2_2001_3000","chr2_3001_4000",
"chr2_4001_5000")
rownames(inputmat)<-c("PAFPJK","PAKKAT","PUFFUM")
outputmat<-matrix(runif(15),nrow=3)
outputmat<-cor(inputmat)*matrix(runif(25,-30,500),nrow=5)
diag(outputmat)<-Inf
postProcessLinRegMatrix(input_matrix=t(inputmat),LM_mat=outputmat,cor_type="pearson",
inf_replacement_val=300)