pte.estimate.multiple {CMFsurrogate} | R Documentation |
Estimates the proportion of treatment effect explained by the optimal combination of multiple surrogate markers using a calibrated model fusion approach
Description
Estimates the proportion of treatment effect explained by the optimal combination of multiple surrogate markers using a calibrated model fusion approach
Usage
pte.estimate.multiple(sob, yob, aob, var = TRUE, rep = 500)
Arguments
sob |
surrogates |
yob |
primary outcome, y |
aob |
treatment indicator |
var |
TRUE or FALSE, if variance/SE of PTE is being requested |
rep |
if var is TRUE, number of resampled draws to use for bootstrap |
Value
pte.es |
Estimate of the proportion of treatment effect explained (PTE) |
pte.se |
if var = TRUE, estimate of the standard error of the PTE |
References
Wang, X., Parast, L., Han, L., Tian, L., & Cai, T. (2022). Robust approach to combining multiple markers to improve surrogacy. Biometrics, In press.
Examples
data(example.data)
out=pte.estimate.multiple(sob=example.data$sob, yob=example.data$yob,
aob=example.data$aob, var = FALSE)
out
[Package CMFsurrogate version 1.0 Index]