minque {CLME} | R Documentation |
MINQUE Algorithm
Description
Algorithm to obtain MINQUE estimates of variance components of a linear mixed effects model.
Usage
minque(
Y,
X1,
X2 = NULL,
U = NULL,
Nks = dim(X1)[1],
Qs = dim(U)[2],
mq.eps = 1e-04,
mq.iter = 500,
verbose = FALSE,
...
)
Arguments
Y |
|
X1 |
|
X2 |
optional |
U |
optional |
Nks |
optional |
Qs |
optional |
mq.eps |
criterion for convergence for the MINQUE algorithm. |
mq.iter |
maximum number of iterations permitted for the MINQUE algorithm. |
verbose |
if |
... |
space for additional arguments. |
Details
By default, the model assumes homogeneity of variances for both the residuals and the random effects
(if included). See the Details in clme_em
for more information on how to use the
arguments Nks
and Qs
to permit heterogeneous variances.
Value
The function returns a vector of the form (\tau^{2}_{1}, \tau^{2}_{2}, \ldots, \tau^{2}_{q}, \sigma^{2}_{1},\sigma^{2}_{2},\ldots, \sigma^{2}_{k})'
. If there are no random effects, then the output is just (\sigma^{2}_{1},\sigma^{2}_{2},\ldots, \sigma^{2}_{k})'
.
Note
This function is called by several other function in CLME to obtain estimates of the random effect variances. If there are no random effects, they will not call minque
.
Examples
data( rat.blood )
model_mats <- model_terms_clme( mcv ~ time + temp + sex + (1|id) ,
data = rat.blood )
Y <- model_mats$Y
X1 <- model_mats$X1
X2 <- model_mats$X2
U <- model_mats$U
# No covariates or random effects
minque(Y = Y, X1 = X1 )
# Include covariates and random effects
minque(Y = Y, X1 = X1, X2 = X2, U = U )