| minque {CLME} | R Documentation |
MINQUE Algorithm
Description
Algorithm to obtain MINQUE estimates of variance components of a linear mixed effects model.
Usage
minque(
Y,
X1,
X2 = NULL,
U = NULL,
Nks = dim(X1)[1],
Qs = dim(U)[2],
mq.eps = 1e-04,
mq.iter = 500,
verbose = FALSE,
...
)
Arguments
Y |
|
X1 |
|
X2 |
optional |
U |
optional |
Nks |
optional |
Qs |
optional |
mq.eps |
criterion for convergence for the MINQUE algorithm. |
mq.iter |
maximum number of iterations permitted for the MINQUE algorithm. |
verbose |
if |
... |
space for additional arguments. |
Details
By default, the model assumes homogeneity of variances for both the residuals and the random effects
(if included). See the Details in clme_em for more information on how to use the
arguments Nks and Qs to permit heterogeneous variances.
Value
The function returns a vector of the form (\tau^{2}_{1}, \tau^{2}_{2}, \ldots, \tau^{2}_{q}, \sigma^{2}_{1},\sigma^{2}_{2},\ldots, \sigma^{2}_{k})'. If there are no random effects, then the output is just (\sigma^{2}_{1},\sigma^{2}_{2},\ldots, \sigma^{2}_{k})'.
Note
This function is called by several other function in CLME to obtain estimates of the random effect variances. If there are no random effects, they will not call minque.
Examples
data( rat.blood )
model_mats <- model_terms_clme( mcv ~ time + temp + sex + (1|id) ,
data = rat.blood )
Y <- model_mats$Y
X1 <- model_mats$X1
X2 <- model_mats$X2
U <- model_mats$U
# No covariates or random effects
minque(Y = Y, X1 = X1 )
# Include covariates and random effects
minque(Y = Y, X1 = X1, X2 = X2, U = U )