BIC.clme {CLME} | R Documentation |
Bayesian information criterion
Description
Calculates the Bayesian information criterion for objects of class clme
.
Calculates the Akaike and Bayesian information criterion for objects of class clme
.
Usage
## S3 method for class 'clme'
BIC(object, ..., k = log(nobs(object)/(2 * pi)))
## S3 method for class 'summary.clme'
BIC(object, ..., k = log(nobs(object)/(2 * pi)))
Arguments
object |
object of class |
... |
space for additional arguments. |
k |
value multiplied by number of coefficients |
Details
The log-likelihood is assumed to be the Normal distribution. The model uses residual bootstrap methodology, and Normality is neither required nor assumed. Therefore the log-likelihood and these information criterion may not be useful measures for comparing models.
For k=2
, the function computes the AIC. To obtain BIC, set k = log( n/(2*pi) )
; which the method BIC.clme
does.
Value
Returns the Bayesian information criterion (numeric).
See Also
Examples
data( rat.blood )
cons <- list(order = "simple", decreasing = FALSE, node = 1 )
clme.out <- clme(mcv ~ time + temp + sex + (1|id), data = rat.blood ,
constraints = cons, seed = 42, nsim = 0)
BIC( clme.out )
BIC( clme.out, k=log( nobs(clme.out)/(2*pi) ) )
[Package CLME version 2.0-12 Index]