true_c_fun_cal {CIMTx} | R Documentation |
Calculate the true c functions with 3 treatments and a binary predictor
Description
This function calculates the true confounding functions with 3 treatments and a binary predictor for simulated data.
Usage
true_c_fun_cal(x, w)
Arguments
x |
A matrix with one column for the binary predictor with values 0 and 1 |
w |
A treatment indicator |
Value
A matrix with 2 rows and 6 columns
Examples
set.seed(111)
data_SA <- data_sim(
sample_size = 100,
n_trt = 3,
x = c(
"rbinom(1, .5)", # x1:measured confounder
"rbinom(1, .4)"
), # x2:unmeasured confounder
lp_y = rep(".2*x1+2.3*x2", 3), # parallel response surfaces
nlp_y = NULL,
align = FALSE, # w model is not the same as the y model
lp_w = c(
"0.2 * x1 + 2.4 * x2", # w = 1
"-0.3 * x1 - 2.8 * x2"
),
nlp_w = NULL,
tau = c(-2, 0, 2),
delta = c(0, 0),
psi = 1
)
x1 <- data_SA$covariates[, 1, drop = FALSE]
w <- data_SA$w
Y1 <- data_SA$Y_true[, 1]
Y2 <- data_SA$Y_true[, 2]
Y3 <- data_SA$Y_true[, 3]
true_c_fun <- true_c_fun_cal(x = x1, w = w)
[Package CIMTx version 1.2.0 Index]