ce_estimate_bart_att {CIMTx} | R Documentation |
Causal inference with multiple treatments using BART for ATT effects
Description
The function ce_estimate_bart_att
implements
BART to estimate ATT effect with
multiple treatments using observational data.
Usage
ce_estimate_bart_att(
y,
x,
w,
discard = FALSE,
ndpost = 1000,
reference_trt,
...
)
Arguments
y |
A numeric vector (0, 1) representing a binary outcome. |
x |
A dataframe, including all the covariates but not treatments. |
w |
A numeric vector representing the treatment groups. |
discard |
A logical indicating whether to use the discarding rules.
The default is |
ndpost |
A numeric value indicating the number of posterior draws. |
reference_trt |
A numeric value indicating reference treatment group for ATT effect. |
... |
Other parameters that can be passed through to functions. |
Value
A summary of the effect estimates can be obtained
with summary
function. The output also
contains a list of the posterior samples of causal estimands. When
discard = TRUE
, the output contains number of discarded
individuals.
References
Sparapani R, Spanbauer C, McCulloch R Nonparametric Machine Learning and Efficient Computation with Bayesian Additive Regression Trees: The BART R Package. Journal of Statistical Software, 97(1), 1-66.
Hadley Wickham, Romain François, Lionel Henry and Kirill Müller (2021). dplyr: A Grammar of Data Manipulation. R package version 1.0.7. URL: https://CRAN.R-project.org/package=dplyr