naive_se {CIEE} | R Documentation |
Naive standard error estimates
Description
Function to obtain naive standard error estimates for the parameter
estimates of the get_estimates
function, under the GLM or AFT
setting for the analysis of a normally-distributed or censored time-to-event
primary outcome.
Usage
naive_se(setting = "GLM", Y = NULL, X = NULL, K = NULL, L = NULL,
C = NULL)
Arguments
setting |
String with value |
Y |
Numeric input vector for the primary outcome. |
X |
Numeric input vector for the exposure variable. |
K |
Numeric input vector for the intermediate outcome. |
L |
Numeric input vector for the observed confounding factor. |
C |
Numeric input vector for the censoring indicator under the AFT setting (must be coded 0 = censored, 1 = uncensored). |
Details
Under the GLM setting for the analysis of a normally-distributed primary
outcome Y, naive standard error estimates are obtained for the estimates of the
parameters
\alpha_0, \alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_{XY}
in the models
Y = \alpha_0 + \alpha_1 \cdot K + \alpha_2 \cdot X + \alpha_3 \cdot L + \epsilon_1, \epsilon_1 \sim N(0,\sigma_1^2)
Y^* = Y - \overline{Y} - \alpha_1 \cdot (K-\overline{K})
Y^* = \alpha_0 + \alpha_{XY} \cdot X + \epsilon_2, \epsilon_2 \sim N(0,\sigma_2^2),
using the lm
function, without accounting for the
additional variability due to the 2-stage approach.
Under the AFT setting for the analysis of a censored time-to-event primary
outcome, bootstrap standard error estimates are similarly obtained of the
parameter estimates of
\alpha_0, \alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_{XY}
from the output of the survreg
and
lm
functions.
Value
Returns a vector with the naive standard error estimates of the parameter estimates.
Examples
dat <- generate_data(setting = "GLM")
naive_se(setting = "GLM", Y = dat$Y, X = dat$X, K = dat$K, L = dat$L)