bootstrap_se {CIEE} | R Documentation |
Bootstrap standard error estimates
Description
Function to obtain bootstrap standard error estimates for the parameter
estimates of the get_estimates
function, under the generalized
linear model (GLM) or accelerated failure time (AFT) setting for the analysis
of a normally-distributed or censored time-to-event primary outcome.
Usage
bootstrap_se(setting = "GLM", BS_rep = 1000, Y = NULL, X = NULL,
K = NULL, L = NULL, C = NULL)
Arguments
setting |
String with value |
BS_rep |
Integer indicating the number of bootstrap samples that are drawn. |
Y |
Numeric input vector for the primary outcome. |
X |
Numeric input vector for the exposure variable. |
K |
Numeric input vector for the intermediate outcome. |
L |
Numeric input vector for the observed confounding factor. |
C |
Numeric input vector for the censoring indicator under the AFT setting (must be coded 0 = censored, 1 = uncensored). |
Details
Under the GLM setting for the analysis of a normally-distributed primary
outcome Y, bootstrap standard error estimates are obtained for the estimates
of the parameters
\alpha_0, \alpha_1, \alpha_2, \alpha_3, \sigma_1^2, \alpha_4, \alpha_{XY}, \sigma_2^2
in the models
Y = \alpha_0 + \alpha_1 \cdot K + \alpha_2 \cdot X + \alpha_3 \cdot L + \epsilon_1, \epsilon_1 \sim N(0,\sigma_1^2)
Y^* = Y - \overline{Y} - \alpha_1 \cdot (K-\overline{K})
Y^* = \alpha_0 + \alpha_{XY} \cdot X + \epsilon_2, \epsilon_2 \sim N(0,\sigma_2^2),
accounting for the additional variability from the 2-stage approach.
Under the AFT setting for the analysis of a censored time-to-event primary
outcome, bootstrap standard error estimates are similarly obtained of the
parameter estimates of
\alpha_0, \alpha_1, \alpha_2, \alpha_3, \sigma_1, \alpha_4, \alpha_{XY}, \sigma_2^2
Value
Returns a vector with the bootstrap standard error estimates of the parameter estimates.
Examples
dat <- generate_data(setting = "GLM", n = 100)
# For illustration use here only 100 bootstrap samples, recommended is using 1000
bootstrap_se(setting = "GLM", BS_rep = 100, Y = dat$Y, X = dat$X,
K = dat$K, L = dat$L)