plot_goodnessOfFit {CGNM} | R Documentation |
plot_goodnessOfFit
Description
Make goodness of fit plots to assess the model-fit and bias in residual distribution. The linear model is fit to the residual and plotted using geom_smooth(method=lm) in ggplot.
Explanation of the terminologies in terms of PBPK model fitting to the time-course drug concentration measurements:
"independent variable" is time
"dependent variable" is the concentration.
"Residual" is the difference between the measured concentration and the model simulation with the parameter fond by the CGNM.
"m" is number of observations
Usage
plot_goodnessOfFit(
CGNM_result,
plotType = 1,
plotRank = c(1),
independentVariableVector = NA,
dependentVariableTypeVector = NA,
absResidual = FALSE
)
Arguments
CGNM_result |
(required input) A list stores the computational result from Cluster_Gauss_Newton_method() function in CGNM package. |
plotType |
(default: 1) 1,2 or 3 |
plotRank |
(default: c(1)) a vector of integers |
independentVariableVector |
(default: NA) a vector of numerics of length m |
dependentVariableTypeVector |
(default: NA) a vector of text of length m |
absResidual |
(default: FALSE) TRUE or FALSE If TRUE plot absolute values of the residual. |
Value
A ggplot object of the goodness of fit plot.
Examples
model_analytic_function=function(x){
observation_time=c(0.1,0.2,0.4,0.6,1,2,3,6,12)
Dose=1000
F=1
ka=10^x[1]
V1=10^x[2]
CL_2=10^x[3]
t=observation_time
Cp=ka*F*Dose/(V1*(ka-CL_2/V1))*(exp(-CL_2/V1*t)-exp(-ka*t))
log10(Cp)
}
observation=log10(c(4.91, 8.65, 12.4, 18.7, 24.3, 24.5, 18.4, 4.66, 0.238))
CGNM_result=Cluster_Gauss_Newton_method(
nonlinearFunction=model_analytic_function,
targetVector = observation,
initial_lowerRange = rep(0.01,3), initial_upperRange = rep(100,3),
lowerBound=rep(0,3), ParameterNames = c("Ka","V1","CL"),
num_iter = 10, num_minimizersToFind = 100, saveLog = FALSE)
plot_goodnessOfFit(CGNM_result)
plot_goodnessOfFit(CGNM_result,
independentVariableVector=c(0.1,0.2,0.4,0.6,1,2,3,6,12))