movies {CFilt}R Documentation

Movie ratings by users

Description

A dataset containing 7276 ratings for 50 movies by 526 users. This database was created by Giglio (2014).

Usage

movies

Format

A data frame with 7276 rows and 3 variables:

Id Users

Users identifier. Numbers 1 to 526.

Id Items

Movies identifier. Movies list:

  1. Iron Man 3

  2. Despicable Me 2

  3. My Mom Is a Character

  4. Fast & Furious 6

  5. The Wolverine

  6. Thor: The Dark World

  7. Hansel & Gretel: Witch Hunters

  8. Wreck-It Ralph

  9. Monsters University

  10. The Hangover Part III

  11. Vai Que Dá Certo

  12. Meu Passado me Condena

  13. We’re So Young

  14. Brazilian Western

  15. O Concurso

  16. Mato sem Cachorro

  17. Cine Holliudy

  18. Odeio o Dia dos Namorados

  19. Argo

  20. Django Unchained

  21. Life of Pi

  22. Lincoln

  23. Zero Dark Thirty

  24. Les Miserables

  25. Silver Linings Playbook

  26. Beasts of the Southern Wild

  27. Amour

  28. A Royal Affair

  29. American Hustle

  30. Capitain Phillips

  31. 12 Years a Slave

  32. Dallas Buyers Club

  33. Gravity

  34. Her

  35. Philomena

  36. The Wolf of Wall Street

  37. The Hunt

  38. Frozen

  39. Till Luck Do Us Part 2

  40. Muita Calma Nessa Hora 2

  41. Paranormal Activity: The Marked Ones

  42. I, Frankenstein,

  43. The Legend of Tarzan

  44. The Book Thief

  45. The Lego Movie, , ,

  46. Walking With Dinosaurs

  47. The Hunger Games: Catching Fire

  48. Blue Is The Warmest Color

  49. Reaching for the Moon

  50. The Hobbit: The Desolation of Smaug

Ratings

Movie ratings by users. The ratings follows the Likert scale: 1 to 5.

References

Giglio , J. C. (2014). Recomendação de Filmes Utilizando Filtragem Colaborativa [Recommending Films Using Collaborative Filtering]. Undergraduate thesis - Universidade Federal Fluminense.


[Package CFilt version 0.2.1 Index]