cfc.survreg.survprob {CFC} | R Documentation |
Survival probability function for survreg
models
Description
Function for predicting survival probability as a function of time for survreg
regression objects in survival package. It can be used to mix survreg
models with other survival models in competing-risk analysis, using CFC package. This function is used inside cfc.survreg
.
Usage
cfc.survreg.survprob(t, args, n)
Arguments
t |
Time from index. Must be non-negative, but can be a vector. |
args |
Regression object that is returned by |
n |
Observation index, must be between |
Value
Vector of survival probabilities at time(s) t
.
Author(s)
Mansour T.A. Sharabiani, Alireza S. Mahani
References
Mahani A.S. and Sharabiani M.T.A. (2019). Bayesian, and Non-Bayesian, Cause-Specific Competing-Risk Analysis for Parametric and Nonparametric Survival Functions: The R Package CFC. Journal of Statistical Software, 89(9), 1-29. doi:10.18637/jss.v089.i09
See Also
Examples
## Not run:
library("CFC") # for cfc
data(bmt)
library("randomForestSRC") # for rfsrc
library("survival") # for survreg
prep <- cfc.prepdata(Surv(time, cause) ~ platelet + age + tcell, bmt)
f1 <- prep$formula.list[[1]]
f2 <- prep$formula.list[[2]]
dat <- prep$dat
tmax <- prep$tmax
# building a parametric Weibull regression model
# for cause 1
reg1 <- survreg(f1, dat, x = TRUE) # must keep x for prediction
# building a random forest survival model for cause 2
reg2 <- rfsrc(f2, dat)
# implementing a continuous interface for the random forest
# survival function
rfsrc.survfunc <- function(t, args, n) {
which.zero <- which(t < .Machine$double.eps)
ret <- approx(args$time.interest, args$survival[n, ], t, rule = 2)$y
ret[which.zero] <- 1.0
return (ret)
}
# constructing function and argument list
f.list <- list(cfc.survreg.survprob, rfsrc.survfunc)
arg.list <- list(reg1, reg2)
# competing-risk analysis
tout <- seq(0.0, tmax, length.out = 10)
# increase rel.tol for higher accuracy
cfc.out <- cfc(f.list, arg.list, nrow(bmt), tout, rel.tol = 1e-3)
## End(Not run)