predict {CDM} | R Documentation |
Expected Values and Predicted Probabilities from Item Response Response Models
Description
This function computes expected values for each person and each item based on the individual posterior distribution. The output of this function can be the basis of creating item and person fit statistics.
Usage
IRT.predict(object, dat, group=1)
## S3 method for class 'din'
predict(object, group=1, ...)
## S3 method for class 'gdina'
predict(object, group=1, ...)
## S3 method for class 'mcdina'
predict(object, group=1, ...)
## S3 method for class 'gdm'
predict(object, group=1, ...)
## S3 method for class 'slca'
predict(object, group=1, ...)
Arguments
object |
Object for the S3 methods |
dat |
Dataset with item responses |
group |
Group index for use |
... |
Further arguments to be passed. |
Value
A list with following entries
expected |
Array with expected values (persons |
probs.categ |
Array with expected probabilities for
each category (persons |
variance |
Array with variance in predicted values for each person and each item. |
residuals |
Array with residuals for each person and each item |
stand.resid |
Array with standardized residuals for each person and each item |
Examples
## Not run:
#############################################################################
# EXAMPLE 1: Fitted Rasch model in TAM package
#############################################################################
#--- Model 1: Rasch model
library(TAM)
mod1 <- TAM::tam.mml(resp=TAM::sim.rasch)
# apply IRT.predict function
prmod1 <- CDM::IRT.predict(mod1, mod1$resp )
str(prmod1)
## End(Not run)
#############################################################################
# EXAMPLE 2: Predict function for din
#############################################################################
# DINA Model
mod1 <- CDM::din( CDM::sim.dina, q.matr=CDM::sim.qmatrix, rule="DINA" )
summary(mod1)
# apply predict method
prmod1 <- CDM::IRT.predict( mod1, sim.dina )
str(prmod1)