din.equivalent.class {CDM} | R Documentation |
Calculation of Equivalent Skill Classes in the DINA/DINO Model
Description
This function computes indistinguishable skill classes for the DINA and DINO model (Gross & George, 2014; Zhang, DeCarlo & Ying, 2013).
Usage
din.equivalent.class(q.matrix, rule="DINA")
Arguments
q.matrix |
The Q-matrix (see |
rule |
The condensation rule. If it is a string, then the rule applies
to all items. If it is a vector, then for each item |
Value
A list with following entries:
latent.responseM |
Matrix of latent responses |
latent.response |
Latent responses represented as a string |
S |
Matrix containing all skill classes |
gini |
Gini coefficient of the frequency distribution of identifiable skill classes which result in the same latent response |
skillclasses |
Data frame with skill class ( |
References
Gross, J. & George, A. C. (2014). On prerequisite relations between attributes in noncompensatory diagnostic classification. Methodology, 10(3), 100-107.
Zhang, S. S., DeCarlo, L. T., & Ying, Z. (2013). Non-identifiability, equivalence classes, and attribute-specific classification in Q-matrix based cognitive diagnosis models. arXiv preprint, arXiv:1303.0426.
Examples
#############################################################################
# EXAMPLE 1: Equivalency classes for DINA model for fraction subtraction data
#############################################################################
#-- DINA models
data(data.fraction2, package="CDM")
# first Q-matrix
Q1 <- data.fraction2$q.matrix1
m1 <- CDM::din.equivalent.class( q.matrix=Q1, rule="DINA" )
## 8 Skill classes | 5 distinguishable skill classes | Gini coefficient=0.3
# second Q-matrix
Q1 <- data.fraction2$q.matrix2
m1 <- CDM::din.equivalent.class( q.matrix=Q1, rule="DINA" )
## 32 Skill classes | 9 distinguishable skill classes | Gini coefficient=0.5
# third Q-matrix
Q1 <- data.fraction2$q.matrix3
m1 <- CDM::din.equivalent.class( q.matrix=Q1, rule="DINA" )
## 8 Skill classes | 8 distinguishable skill classes | Gini coefficient=0
# original fraction subtraction data
m1 <- CDM::din.equivalent.class( q.matrix=CDM::fraction.subtraction.qmatrix, rule="DINA")
## 256 Skill classes | 58 distinguishable skill classes | Gini coefficient=0.659