data.fraction {CDM} | R Documentation |
Fraction Subtraction Dataset with Different Subsets of Data and Different Q-Matrices
Description
Contains different sub-datasets of the fraction subtraction data of Tatsuoka with different Q-matrix specifications.
Usage
data(data.fraction1)
data(data.fraction2)
data(data.fraction3)
data(data.fraction4)
data(data.fraction5)
Format
The dataset
data.fraction1
is the fraction subtraction data set with 536 students and 15 items. The Q-matrix was defined in de la Torre (2009). This dataset is a list with the dataset (data
) and the Q-matrix as entries.The format is:
List of 2
$ data :'data.frame':
..$ T01: int [1:536] 0 1 1 1 0 0 0 0 0 0 ...
..$ T02: int [1:536] 1 1 1 1 1 0 0 1 0 0 ...
..$ T03: int [1:536] 0 1 1 1 1 1 0 0 0 0 ...
..$ T04: int [1:536] 1 1 1 0 0 0 0 0 0 0 ...
..$ T05: int [1:536] 0 1 0 0 0 1 1 0 1 1 ...
..$ T06: int [1:536] 1 1 0 1 0 0 0 0 0 0 ...
..$ T07: int [1:536] 1 1 0 1 0 0 0 0 0 0 ...
..$ T08: int [1:536] 1 1 0 1 1 0 0 0 1 1 ...
..$ T09: int [1:536] 1 1 1 1 0 1 0 0 1 0 ...
..$ T10: int [1:536] 1 1 1 0 0 0 0 0 0 0 ...
..$ T11: int [1:536] 1 1 1 1 0 0 0 0 0 0 ...
..$ T12: int [1:536] 0 1 0 0 0 0 0 0 0 0 ...
..$ T13: int [1:536] 1 1 0 1 0 0 0 0 0 0 ...
..$ T14: int [1:536] 1 1 0 0 0 0 0 0 0 0 ...
..$ T15: int [1:536] 1 1 0 1 0 0 0 0 0 0 ...
$ q.matrix: int [1:15, 1:5] 1 1 1 1 0 1 1 1 1 1 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:15] "T01" "T02" "T03" "T04" ...
.. ..$ : chr [1:5] "QT1" "QT2" "QT3" "QT4" ...
The dataset
data.fraction2
is the fraction subtraction data set with 536 students and 11 items. For this data set, severalQ
matrices are available. The data is a list. The first entrydata
contains the data frame. The entryq.matrix1
contains the Q-matrix of Henson, Templin and Willse (2009). The third entryq.matrix2
is an alternative Q-matrix of de la Torre (2009). The fourth entry is a modified Q-matrix ofq.matrix1
.The format is:
$ data :'data.frame':
..$ H01: int [1:536] 1 1 1 1 1 0 0 1 0 0 ...
..$ H02: int [1:536] 1 1 1 0 0 0 0 0 0 0 ...
..$ H03: int [1:536] 0 1 0 0 0 1 1 0 1 1 ...
..$ H04: int [1:536] 1 1 0 1 0 0 0 0 0 0 ...
..$ H05: int [1:536] 1 1 0 1 0 0 0 0 0 0 ...
..$ H06: int [1:536] 1 1 0 1 1 0 0 0 1 1 ...
..$ H08: int [1:536] 1 1 1 0 0 0 0 0 0 0 ...
..$ H09: int [1:536] 1 1 1 1 0 0 0 0 0 0 ...
..$ H10: int [1:536] 0 1 0 0 0 0 0 0 0 0 ...
..$ H11: int [1:536] 1 1 0 1 0 0 0 0 0 0 ...
..$ H13: int [1:536] 1 1 0 1 0 0 0 0 0 0 ...
$ q.matrix1: int [1:11, 1:3] 1 1 1 1 1 1 1 1 1 1 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:11] "H01" "H02" "H03" "H04" ...
.. ..$ : chr [1:3] "QH1" "QH2" "QH3"
$ q.matrix2: int [1:11, 1:5] 1 1 0 1 1 1 1 1 1 1 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:11] "H01" "H02" "H03" "H04" ...
.. ..$ : chr [1:5] "QT1" "QT2" "QT3" "QT4" ...
$ q.matrix3: num [1:11, 1:3] 0 0 0 1 0 0 0 0 1 1 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:11] "H01" "H02" "H03" "H04" ...
.. ..$ : chr [1:3] "Dim1" "Dim2" "Dim3"
The dataset
data.fraction3
contains 12 items and was used in de la Torre (2011).List of 2
$ data :'data.frame': 536 obs. of 12 variables:
..$ B01: int [1:536] 0 1 1 1 0 0 0 0 0 0 ...
..$ B02: int [1:536] 1 1 1 1 1 0 0 1 0 0 ...
..$ B03: int [1:536] 0 1 1 1 1 1 0 0 0 0 ...
..$ B04: int [1:536] 0 1 0 0 0 1 1 0 1 1 ...
..$ B05: int [1:536] 1 1 0 1 0 0 0 0 0 0 ...
..$ B06: int [1:536] 1 1 0 1 0 0 0 0 0 0 ...
..$ B07: int [1:536] 1 1 0 1 1 0 0 0 1 1 ...
..$ B08: int [1:536] 1 1 1 1 0 1 0 0 1 0 ...
..$ B09: int [1:536] 1 1 1 1 0 0 0 0 0 0 ...
..$ B10: int [1:536] 0 1 0 0 0 0 0 0 0 0 ...
..$ B11: int [1:536] 1 1 0 1 0 0 0 0 0 0 ...
..$ B12: int [1:536] 1 1 0 1 0 0 0 0 0 0 ...
$ q.matrix:'data.frame': 12 obs. of 5 variables:
..$ item: Factor w/ 13 levels "","B01","B02",..: 2 3 4 5 6 7 8 9 10 11 ...
..$ QA1 : int [1:12] 1 1 1 1 1 1 1 1 1 1 ...
..$ QA2 : int [1:12] 0 1 0 0 1 1 1 0 0 0 ...
..$ QA3 : int [1:12] 0 1 0 1 1 1 0 1 1 1 ...
..$ QA4 : int [1:12] 0 1 0 0 1 1 0 0 0 1 ...
The dataset
data.fraction4
contains 17 items and was used in de la Torre and Douglas (2004) and Chen, Liu, Xu and Ying (2015).List of 2
$ data :'data.frame': 536 obs. of 17 variables:
..$ A01: int [1:536] 0 0 0 1 0 0 0 0 0 0 ...
..$ A02: int [1:536] 0 1 1 1 0 0 0 0 0 0 ...
..$ A03: int [1:536] 0 1 1 1 0 0 0 0 0 0 ...
..$ A04: int [1:536] 1 1 1 1 1 0 0 1 0 0 ...
..$ A05: int [1:536] 1 1 0 1 1 0 0 0 1 1 ...
..$ A06: int [1:536] 1 1 1 1 0 1 0 0 1 0 ...
..$ A07: int [1:536] 1 1 1 1 0 0 0 0 0 0 ...
..$ A08: int [1:536] 0 0 0 1 0 0 0 0 0 1 ...
..$ A09: int [1:536] 1 1 1 0 0 0 0 0 0 0 ...
..$ A10: int [1:536] 1 1 1 0 0 0 0 0 0 0 ...
..$ A11: int [1:536] 1 1 0 1 0 0 0 0 0 0 ...
..$ A12: int [1:536] 1 1 0 1 0 0 0 0 0 0 ...
..$ A13: int [1:536] 0 1 0 0 0 0 0 0 0 0 ...
..$ A14: int [1:536] 1 1 0 1 0 0 0 0 0 0 ...
..$ A15: int [1:536] 1 1 0 0 0 0 0 0 0 0 ...
..$ A16: int [1:536] 1 1 0 1 0 0 0 0 0 0 ...
..$ A17: int [1:536] 0 1 0 0 0 0 0 0 0 0 ...
$ q.matrix:'data.frame': 17 obs. of 9 variables:
..$ item: Factor w/ 18 levels "","A01","A02",..: 2 3 4 5 6 7 8 9 10 11 ...
..$ QA1 : int [1:17] 0 0 0 0 0 0 0 0 1 0 ...
..$ QA2 : int [1:17] 0 0 0 1 0 1 1 1 1 1 ...
..$ QA3 : int [1:17] 0 0 0 1 0 0 0 0 0 0 ...
..$ QA4 : int [1:17] 1 1 1 0 0 0 0 1 0 0 ...
..$ QA5 : int [1:17] 0 0 0 1 0 0 1 0 0 1 ...
..$ QA6 : int [1:17] 1 0 0 0 0 0 1 0 0 0 ...
..$ QA7 : int [1:17] 1 1 1 1 1 1 1 1 1 1 ...
..$ QA8 : int [1:17] 0 0 0 0 1 0 0 1 0 0 ...
The dataset
data.fraction5
contains 15 items and was used as an example for the multiple strategy DINA model in de la Torre and Douglas (2008) and Hou and de la Torre (2014). The two Q-matrices for coding the multiple strategies are contained in one matrixq.matrix
by joining the columns of both matrices.List of 2
$ data :'data.frame': 536 obs. of 15 variables:
..$ T01: int [1:536] 0 1 1 1 0 0 0 0 0 0 ...
..$ T02: int [1:536] 1 1 1 1 1 0 0 1 0 0 ...
..$ T03: int [1:536] 0 1 1 1 1 1 0 0 0 0 ...
..$ T04: int [1:536] 1 1 1 0 0 0 0 0 0 0 ...
..$ T05: int [1:536] 0 1 0 0 0 1 1 0 1 1 ...
..$ T06: int [1:536] 1 1 0 1 0 0 0 0 0 0 ...
..$ T07: int [1:536] 1 1 0 1 0 0 0 0 0 0 ...
..$ T08: int [1:536] 1 1 0 1 1 0 0 0 1 1 ...
..$ T09: int [1:536] 1 1 1 1 0 1 0 0 1 0 ...
..$ T10: int [1:536] 1 1 1 0 0 0 0 0 0 0 ...
..$ T11: int [1:536] 1 1 1 1 0 0 0 0 0 0 ...
..$ T12: int [1:536] 0 1 0 0 0 0 0 0 0 0 ...
..$ T13: int [1:536] 1 1 0 1 0 0 0 0 0 0 ...
..$ T14: int [1:536] 1 1 0 0 0 0 0 0 0 0 ...
..$ T15: int [1:536] 1 1 0 1 0 0 0 0 0 0 ...
$ q.matrix:'data.frame': 15 obs. of 15 variables:
..$ item: Factor w/ 16 levels "","T01","T02",..: 2 3 4 5 6 7 8 9 10 11 ...
..$ SA1 : int [1:15] 0 1 1 1 0 1 1 1 1 1 ...
..$ SA2 : int [1:15] 0 1 0 1 0 1 1 1 0 0 ...
..$ SA3 : int [1:15] 0 1 0 1 1 1 1 0 1 1 ...
..$ SA4 : int [1:15] 0 1 0 1 0 1 1 0 0 1 ...
..$ SA5 : int [1:15] 0 0 0 1 0 0 0 0 0 1 ...
..$ SA6 : int [1:15] 0 0 0 0 0 0 0 0 0 0 ...
..$ SA7 : int [1:15] 0 0 0 0 0 0 0 0 0 0 ...
..$ SB1 : int [1:15] 0 1 1 1 0 1 1 1 1 1 ...
..$ SB2 : int [1:15] 0 0 0 0 1 1 1 1 0 1 ...
..$ SB3 : int [1:15] 0 0 0 0 0 0 0 0 0 0 ...
..$ SB4 : int [1:15] 0 0 0 0 0 0 0 0 0 0 ...
..$ SB5 : int [1:15] 0 0 0 1 1 0 0 0 0 1 ...
..$ SB6 : int [1:15] 0 1 0 1 1 1 1 0 1 0 ...
..$ SB7 : int [1:15] 0 0 0 0 1 0 0 0 0 0 ...
Source
See fraction.subtraction.data
for more information
about the data source.
References
Chen, Y., Liu, J., Xu, G. and Ying, Z. (2015). Statistical analysis of Q-matrix based diagnostic classification models. Journal of the American Statistical Association, 110(510), 850-866.
de la Torre, J. (2009). DINA model parameter estimation: A didactic. Journal of Educational and Behavioral Statistics, 34, 115-130.
de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76, 179-199.
de la Torre, J., & Douglas, J. A. (2004). Higher-order latent trait models for cognitive diagnosis. Psychometrika, 69, 333-353.
de la Torre, J., & Douglas, J. A. (2008). Model evaluation and multiple strategies in cognitive diagnosis: An analysis of fraction subtraction data. Psychometrika, 73, 595-624.
Henson, R. A., Templin, J. T., & Willse, J. T. (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika, 74, 191-210.
Huo, Y., & de la Torre, J. (2014). Estimating a cognitive diagnostic model for multiple strategies via the EM algorithm. Applied Psychological Measurement, 38, 464-485.