| IRT.jackknife {CDM} | R Documentation |
Jackknifing an Item Response Model
Description
This function performs a Jackknife procedure for estimating
standard errors for an item response model. The replication
design must be defined by IRT.repDesign.
Model fit is also assessed via Jackknife.
Statistical inference for derived parameters is performed
by IRT.derivedParameters with a fitted object of
class IRT.jackknife and a list with defining formulas.
Usage
IRT.jackknife(object,repDesign, ... )
IRT.derivedParameters(jkobject, derived.parameters )
## S3 method for class 'gdina'
IRT.jackknife(object, repDesign, ...)
## S3 method for class 'IRT.jackknife'
coef(object, bias.corr=FALSE, ...)
## S3 method for class 'IRT.jackknife'
vcov(object, ...)
Arguments
object |
Objects for which S3 method |
repDesign |
Replication design generated by |
jkobject |
Object of class |
derived.parameters |
List with defined derived parameters (see Example 2, Model 2). |
bias.corr |
Optional logical indicating whether a bias correction should be employed. |
... |
Further arguments to be passed. |
Value
List with following entries
jpartable |
Parameter table with Jackknife estimates |
parsM |
Matrix with replicated statistics |
vcov |
Variance covariance matrix of parameters |
Examples
## Not run:
library(BIFIEsurvey)
#############################################################################
# EXAMPLE 1: Multiple group DINA model with TIMSS data | Cluster sample
#############################################################################
data(data.timss11.G4.AUT.part, package="CDM")
dat <- data.timss11.G4.AUT.part$data
q.matrix <- data.timss11.G4.AUT.part$q.matrix2
# extract items
items <- paste(q.matrix$item)
# generate replicate design
rdes <- CDM::IRT.repDesign( data=dat, wgt="TOTWGT", jktype="JK_TIMSS",
jkzone="JKCZONE", jkrep="JKCREP" )
#--- Model 1: fit multiple group GDINA model
mod1 <- CDM::gdina( dat[,items], q.matrix=q.matrix[,-1],
weights=dat$TOTWGT, group=dat$female +1 )
# jackknife Model 1
jmod1 <- CDM::IRT.jackknife( object=mod1, repDesign=rdes )
summary(jmod1)
coef(jmod1)
vcov(jmod1)
#############################################################################
# EXAMPLE 2: DINA model | Simple random sampling
#############################################################################
data(sim.dina, package="CDM")
data(sim.qmatrix, package="CDM")
dat <- sim.dina
q.matrix <- sim.qmatrix
# generate replicate design with 50 jackknife zones (50 random groups)
rdes <- CDM::IRT.repDesign( data=dat, jktype="JK_RANDOM", ngr=50 )
#--- Model 1: DINA model
mod1 <- CDM::gdina( dat, q.matrix=q.matrix, rule="DINA")
summary(mod1)
# jackknife DINA model
jmod1 <- CDM::IRT.jackknife( object=mod1, repDesign=rdes )
summary(jmod1)
#--- Model 2: DINO model
mod2 <- CDM::gdina( dat, q.matrix=q.matrix, rule="DINO")
summary(mod2)
# jackknife DINA model
jmod2 <- CDM::IRT.jackknife( object=mod2, repDesign=rdes )
summary(jmod2)
IRT.compareModels( mod1, mod2 )
# statistical inference for derived parameters
derived.parameters <- list( "skill1"=~ 0 + I(prob_skillV1_lev1_group1),
"skilldiff12"=~ 0 + I( prob_skillV2_lev1_group1 - prob_skillV1_lev1_group1 ),
"skilldiff13"=~ 0 + I( prob_skillV3_lev1_group1 - prob_skillV1_lev1_group1 )
)
jmod2a <- CDM::IRT.derivedParameters( jmod2, derived.parameters=derived.parameters )
summary(jmod2a)
coef(jmod2a)
## End(Not run)