CDM-utilities {CDM} | R Documentation |
Utility Functions in CDM
Description
Utility functions in CDM.
Usage
## requireNamespace with package message for needed installation
CDM_require_namespace(pkg)
## attach internal function in a package
cdm_attach_internal_function(pack, fun)
## print function in summary
cdm_print_summary_data_frame(obji, from=NULL, to=NULL, digits=3, rownames_null=FALSE)
## print summary call
cdm_print_summary_call(object, call_name="call")
## print computation time
cdm_print_summary_computation_time(object, time_name="time", time_start="s1",
time_end="s2")
## string vector of matrix entries
cdm_matrixstring( matr, string )
## mvtnorm::rmvnorm with vector conversion for n=1
CDM_rmvnorm(n, mean=NULL, sigma, ...)
## fit univariate and multivariate normal distribution
cdm_fit_normal(x, w)
## fit unidimensional factor analysis by unweighted least squares
cdm_fa1(Sigma, method=1, maxit=50, conv=1E-5)
## another rbind.fill implementation
CDM_rbind_fill( x, y )
## fills a vector row-wise into a matrix
cdm_matrix2( x, nrow )
## fills a vector column-wise into a matrix
cdm_matrix1( x, ncol )
## SCAD thresholding operator
cdm_penalty_threshold_scad(beta, lambda, a=3.7)
## lasso thresholding operator
cdm_penalty_threshold_lasso(val, eta )
## ridge thresholding operator
cdm_penalty_threshold_ridge(beta, lambda)
## elastic net threshold operator
cdm_penalty_threshold_elnet( beta, lambda, alpha )
## SCAD-L2 thresholding operator
cdm_penalty_threshold_scadL2(beta, lambda, alpha, a=3.7)
## truncated L1 penalty thresholding operator
cdm_penalty_threshold_tlp( beta, tau, lambda )
## MCP thresholding operator
cdm_penalty_threshold_mcp(beta, lambda, a=3.7)
## general thresholding operator for regularization
cdm_parameter_regularization(x, regular_type, regular_lam, regular_alpha=NULL,
regular_tau=NULL )
## values of penalty function
cdm_penalty_values(x, regular_type, regular_lam, regular_tau=NULL,
regular_alpha=NULL)
## thresholding operators regularization
cdm_parameter_regularization(x, regular_type, regular_lam, regular_alpha=NULL,
regular_tau=NULL)
## utility functions for P-EM acceleration
cdm_pem_inits(parmlist)
cdm_pem_inits_assign_parmlist(pem_pars, envir)
cdm_pem_acceleration( iter, pem_parameter_index, pem_parameter_sequence, pem_pars,
PEM_itermax, parmlist, ll_fct, ll_args, deviance.history=NULL )
cdm_pem_acceleration_assign_output_parameters(res_ll_fct, vars, envir, update)
## approximation of absolute value function and its derivative
abs_approx(x, eps=1e-05)
abs_approx_D1(x, eps=1e-05)
## information criteria
cdm_calc_information_criteria(ic)
cdm_print_summary_information_criteria(object, digits_crit=0, digits_penalty=2)
## string pasting
cat_paste(...)
Arguments
pkg |
An R package |
pack |
An R package |
fun |
An R function |
obji |
Object |
from |
Integer |
to |
Integer |
digits |
Number of digits used for printing |
rownames_null |
Logical |
call_name |
Character |
time_name |
Character |
time_start |
Character |
time_end |
Character |
matr |
Matrix |
string |
String |
object |
Object |
n |
Integer |
mean |
Mean vector or matrix if separate means for cases are provided. In this case,
|
sigma |
Covariance matrix |
... |
More arguments to be passed (or a list of arguments) |
x |
Matrix or vector |
y |
Matrix or vector |
w |
Vector of sampling weights |
nrow |
Integer |
ncol |
Integer |
Sigma |
Covariance matrix |
method |
Method |
maxit |
Maximum number of iterations |
conv |
Convergence criterion |
beta |
Numeric |
lambda |
Regularization parameter |
alpha |
Regularization parameter |
a |
Parameter |
tau |
Regularization parameter |
val |
Numeric |
eta |
Regularization parameter |
regular_type |
Type of regularization |
regular_lam |
Regularization parameter |
regular_tau |
Regularization parameter |
regular_alpha |
Regularization parameter |
parmlist |
List containing parameters |
pem_pars |
Vector containing parameter names |
envir |
Environment |
update |
Logical |
iter |
Iteration number |
pem_parameter_index |
List with parameter indices |
pem_parameter_sequence |
List with updated parameter sequence |
PEM_itermax |
Maximum number of iterations for PEM |
ll_fct |
Name of log-likelihood function |
ll_args |
Arguments of log-likelihood function |
deviance.history |
Deviance history, a data frame. |
res_ll_fct |
Result of maximized log-likelihood function |
vars |
Vector containing parameter names |
eps |
Numeric |
ic |
List |
digits_crit |
Integer |
digits_penalty |
Integer |