| CASMAP-class {CASMAP} | R Documentation |
Constructor for CASMAP class object.
Description
Constructor for CASMAP class object.
Details
Constructor for CASMAP class object, which needs the mode
parameter to be set by the user. Please see the examples.
Fields
modeEither
'regionGWAS'or'higherOrderEpistasis'.alphaA numeric value setting the Family-wise Error Rate (FWER). Must be strictly between
0and1. Default value is0.05.max_comb_sizeA numeric specifying the maximum length of combinations. For example, if set to
4, then only combinations of size between1and4(inclusive) will be considered. To consider combinations of arbitrary (maximal) length, use value0, which is the default value.
Base method, for both modes
readFilesRead the data, label and possibly covariates files. Parameters are
genotype_file, for the data,phenotype_filefor the labels and (optional)covariates_filefor the covariates. The optionplink_file_rootis not supported in the current version, but will be supported in future versions.setModeCan set/change the mode, but note that any data files will need to read in again using the
readFilescommand.setTargetFWERCan set/change the Family-wise Error Rate (FWER). Takes a numeric parameter
alpha, strictly between0and1.executeOnce the data files have been read, can execute the algorithm. Please note that, depending on the size of the data files, this could take a long time.
getSummaryReturns a data frame with a summary of the results from the execution, but not any significant regions/itemsets. See
getSignificantRegions,getSignificantInteractions, andgetSignificantClusterRepresentatives.writeSummaryDirectly write the information from
getSummaryto file.
regionGWAS Methods
getSignificantRegionsReturns a data frame with the the significant regions. Only valid when
mode='regionGWAS'.getSignificantClusterRepresentativesReturns a data frame with the the representatives of the significant clusters. This will be a subset of the regions returned from
getSignificantRegions. Only valid whenmode='regionGWAS'.writeSignificantRegionsWrites the data from
getSignificantRegionsto file, which must be specified in the parameterpath. Only valid whenmode='regionGWAS'.writeSignificantClusterRepresentativesWrites the data from
getSignificantClusterRepresentativesto file, which must be specified in the parameterpath. Only valid whenmode='regionGWAS'.
higherOrderEpistasis Methods
getSignificantInteractionsReturns the frame from
getSignificantInteractionsto file, which must be specified in the parameterpath. Only valid whenmode='higherOrderEpistasis'.writeSignificantInteractionsWrites a data frame with the significant interactions. Only valid when
mode='higherOrderEpistasis'.
References
A. Terada, M. Okada-Hatakeyama, K. Tsuda and J. Sese Statistical significance of combinatorial regulations, Proceedings of the National Academy of Sciences (2013) 110 (32): 12996-13001
F. Llinares-Lopez, D. G. Grimm, D. Bodenham, U. Gieraths, M. Sugiyama, B. Rowan and K. Borgwardt, Genome-wide detection of intervals of genetic heterogeneity associated with complex traits, ISMB 2015, Bioinformatics (2015) 31 (12): i240-i249
L. Papaxanthos, F. Llinares-Lopez, D. Bodenham, K .Borgwardt, Finding significant combinations of features in the presence of categorical covariates, Advances in Neural Information Processing Systems 29 (NIPS 2016), 2271-2279.
F. Llinares-Lopez, L. Papaxanthos, D. Bodenham, D. Roqueiro and K .Borgwardt, Genome-wide genetic heterogeneity discovery with categorical covariates. Bioinformatics 2017, 33 (12): 1820-1828.
Examples
## An example using the "regionGWAS" mode
fastcmh <- CASMAP(mode="regionGWAS") # initialise object
datafile <- getExampleDataFilename() # file name of example data
labelsfile <- getExampleLabelsFilename() # file name of example labels
covfile <- getExampleCovariatesFilename() # file name of example covariates
# read the data, labels and covariate files
fastcmh$readFiles(genotype_file=getExampleDataFilename(),
phenotype_file=getExampleLabelsFilename(),
covariate_file=getExampleCovariatesFilename() )
# execute the algorithm (this may take some time)
fastcmh$execute()
#get the summary results
summary_results <- fastcmh$getSummary()
#get the significant regions
sig_regions <- fastcmh$getSignificantRegions()
#get the clustered representatives for the significant regions
sig_cluster_rep <- fastcmh$getSignificantClusterRepresentatives()
## Another example of regionGWAS
fais <- CASMAP(mode="regionGWAS") # initialise object
# read the data and labels, but no covariates
fastcmh$readFiles(genotype_file=getExampleDataFilename(),
phenotype_file=getExampleLabelsFilename())
## Another example, doing higher order epistasis search
facs <- CASMAP(mode="higherOrderEpistasis") # initialise object