CASMAP-class {CASMAP} | R Documentation |
Constructor for CASMAP class object.
Constructor for CASMAP class object, which needs the mode
parameter to be set by the user. Please see the examples.
mode
Either 'regionGWAS'
or 'higherOrderEpistasis'
.
alpha
A numeric value setting the Family-wise Error Rate (FWER).
Must be strictly between 0
and 1
. Default
value is 0.05
.
max_comb_size
A numeric specifying the maximum length of
combinations. For example, if set to 4
,
then only combinations of size between 1
and 4
(inclusive) will be considered.
To consider combinations of arbitrary (maximal)
length, use value 0
, which is the default
value.
readFiles
Read the data, label and possibly covariates
files. Parameters are genotype_file
,
for the data, phenotype_file
for the
labels and (optional) covariates_file
for the covariates. The option
plink_file_root
is not supported
in the current version, but will be supported
in future versions.
setMode
Can set/change the mode, but note that any
data files will need to read in again using
the readFiles
command.
setTargetFWER
Can set/change the Family-wise
Error Rate (FWER). Takes a numeric
parameter alpha
, strictly between
0
and 1
.
execute
Once the data files have been read, can execute the algorithm. Please note that, depending on the size of the data files, this could take a long time.
getSummary
Returns a data frame with a summary of the
results from the execution, but not any
significant regions/itemsets. See
getSignificantRegions
,
getSignificantInteractions
, and
getSignificantClusterRepresentatives
.
writeSummary
Directly write the information
from getSummary
to file.
regionGWAS
MethodsgetSignificantRegions
Returns a data frame with the
the significant regions. Only valid when
mode='regionGWAS'
.
getSignificantClusterRepresentatives
Returns a data
frame with the
the representatives of the significant
clusters. This will be a subset of the regions
returned from getSignificantRegions
.
Only valid when mode='regionGWAS'
.
writeSignificantRegions
Writes the data from
getSignificantRegions
to file, which
must be specified in the parameter
path
.
Only valid when mode='regionGWAS'
.
writeSignificantClusterRepresentatives
Writes the data
from
getSignificantClusterRepresentatives
to
file, which must be specified in the parameter
path
.
Only valid when mode='regionGWAS'
.
higherOrderEpistasis
MethodsgetSignificantInteractions
Returns the frame
from getSignificantInteractions
to
file, which must be specified in the parameter
path
. Only valid
when mode='higherOrderEpistasis'
.
writeSignificantInteractions
Writes a data frame with
the significant interactions. Only valid
when mode='higherOrderEpistasis'
.
A. Terada, M. Okada-Hatakeyama, K. Tsuda and J. Sese Statistical significance of combinatorial regulations, Proceedings of the National Academy of Sciences (2013) 110 (32): 12996-13001
F. Llinares-Lopez, D. G. Grimm, D. Bodenham, U. Gieraths, M. Sugiyama, B. Rowan and K. Borgwardt, Genome-wide detection of intervals of genetic heterogeneity associated with complex traits, ISMB 2015, Bioinformatics (2015) 31 (12): i240-i249
L. Papaxanthos, F. Llinares-Lopez, D. Bodenham, K .Borgwardt, Finding significant combinations of features in the presence of categorical covariates, Advances in Neural Information Processing Systems 29 (NIPS 2016), 2271-2279.
F. Llinares-Lopez, L. Papaxanthos, D. Bodenham, D. Roqueiro and K .Borgwardt, Genome-wide genetic heterogeneity discovery with categorical covariates. Bioinformatics 2017, 33 (12): 1820-1828.
## An example using the "regionGWAS" mode
fastcmh <- CASMAP(mode="regionGWAS") # initialise object
datafile <- getExampleDataFilename() # file name of example data
labelsfile <- getExampleLabelsFilename() # file name of example labels
covfile <- getExampleCovariatesFilename() # file name of example covariates
# read the data, labels and covariate files
fastcmh$readFiles(genotype_file=getExampleDataFilename(),
phenotype_file=getExampleLabelsFilename(),
covariate_file=getExampleCovariatesFilename() )
# execute the algorithm (this may take some time)
fastcmh$execute()
#get the summary results
summary_results <- fastcmh$getSummary()
#get the significant regions
sig_regions <- fastcmh$getSignificantRegions()
#get the clustered representatives for the significant regions
sig_cluster_rep <- fastcmh$getSignificantClusterRepresentatives()
## Another example of regionGWAS
fais <- CASMAP(mode="regionGWAS") # initialise object
# read the data and labels, but no covariates
fastcmh$readFiles(genotype_file=getExampleDataFilename(),
phenotype_file=getExampleLabelsFilename())
## Another example, doing higher order epistasis search
facs <- CASMAP(mode="higherOrderEpistasis") # initialise object