bivariate.EM {CAMAN} | R Documentation |
EM-algorithm for bivariate normally distributed data
Description
Function
Usage
bivariate.EM(obs1, obs2, type, data = NULL,
var1, var2,
corr, lambda1, lambda2, p,
numiter=5000,acc=1.e-7,class)
Arguments
obs1 |
the first column of the observations |
obs2 |
the second column of the observations |
type |
kind of data |
data |
an optional data frame. If not |
var1 |
Variance of the first column of the observations(except meta-analysis) |
var2 |
Variance of the second column of the observations (except meta-analysis) |
corr |
correlation coefficient |
lambda1 |
Means of the first column of the observations |
lambda2 |
Means of the second column of the observations |
p |
Mixing weight |
numiter |
parameter to control the maximal number of iterations in the EM loops. Default is 5000. |
acc |
convergence criterion. Default is 1.e-7 |
class |
classification of studies? |
Examples
## Not run:
# 1.EM and classification for bivariate data with starting values
data(rs12363681)
lambda1<-c(1540.97, 837.12, 945.40, 1053.69)
lambda2<-c(906.66, 1371.81 ,1106.01,973.11)
p<-c(0.05,0.15,0.6,0.2)
test<-bivariate.EM(obs1=x, obs2=y, type="bi", lambda1=lambda1,lambda2=lambda2,
p=p,data=rs12363681,class="TRUE")
# scatter plot with ellipse
plot(test, ellipse=TRUE)
# scatter plot without ellipse
plot(test, ellipse=FALSE)
## End(Not run)
# 2. EM-algorithm for a diagnostic meta-analysis with bivariate
# normally distributed data and study specific fixed variances
data(CT)
p2<-c(0.4,0.6)
lamlog12<-c(2.93,3.22)
lamlog22<-c(2.5,1.5)
ct.m1 <- bivariate.EM(obs1=logitTPR, obs2=logitTNR,
var1=varlogitTPR, var2=varlogitTNR,
type="meta", lambda1=lamlog12, lambda2=lamlog22,
p=p2,data=CT,class="TRUE")
[Package CAMAN version 0.78 Index]