CADFtest {CADFtest} | R Documentation |
Hansen's Covariate-Augmented Dickey Fuller (CADF) test for unit roots
Description
This function is an interface to CADFtest.default
that computes the CADF unit root test
proposed in Hansen (1995). The asymptotic p-values of the test are also computed along the lines
proposed in Costantini et al. (2007). Automatic model selection is allowed. A full description
and some applications can be found in Lupi (2009).
Usage
CADFtest(model, X=NULL, type=c("trend", "drift", "none"),
data=list(), max.lag.y=1, min.lag.X=0, max.lag.X=0,
dname=NULL, criterion=c("none", "BIC", "AIC", "HQC",
"MAIC"), ...)
Arguments
model |
a formula of the kind |
X |
if |
type |
defines the deterministic kernel used in the test. It accepts the values used in package
|
data |
data to be used (optional). This argument is effective only when |
max.lag.y |
maximum number of lags allowed for the lagged differences of the variable to be tested. |
min.lag.X |
if negative it is maximum lead allowed for the covariates. If zero, it is the minimum lag allowed for the covariates. |
max.lag.X |
maximum lag allowed for the covariates. |
dname |
NULL or character. It can be used to give a special name to the model. If the NULL default is accepted and the model is specified using a formula notation, then dname is computed according to the used formula. |
criterion |
it can be either |
... |
Extra arguments that can be set to use special kernels, prewhitening, etc. in the estimation of
|
Value
The function returns an object of class c("CADFtest", "htest")
containing:
statistic |
the t test statistic. |
parameter |
the estimated nuisance parameter |
method |
the test performed: it can be either |
p.value |
the p-value of the test. |
data.name |
the data name. |
max.lag.y |
the maximum lag of the differences of the dependent variable. |
min.lag.X |
the maximum lead of the stationary covariate(s). |
max.lag.X |
the maximum lag of the stationary covariate(s). |
AIC |
the value of the AIC for the selected model. |
BIC |
the value of the BIC for the selected model. |
HQC |
the value of the HQC for the selected model. |
MAIC |
the value of the MAIC for the selected model. |
est.model |
the estimated model. |
estimate |
the estimated value of the parameter of the lagged dependent variable. |
null.value |
the value of the parameter of the lagged dependent variable under the null. |
alternative |
the alternative hypothesis. |
call |
the call to the function. |
type |
the deterministic kernel used. |
Author(s)
Claudio Lupi
References
Costantini M, Lupi C, Popp S (2007). A Panel-CADF Test for Unit Roots, University of Molise, Economics & Statistics Discussion Paper 39/07. http://econpapers.repec.org/paper/molecsdps/esdp07039.htm
Hansen BE (1995). Rethinking the Univariate Approach to Unit Root Testing: Using Covariates to Increase Power, Econometric Theory, 11(5), 1148–1171.
Lupi C (2009). Unit Root CADF Testing with R, Journal of Statistical Software, 32(2), 1–19. http://www.jstatsoft.org/v32/i02/
Zeileis A (2004). Econometric Computing with HC and HAC Covariance Matrix Estimators, Journal of Statistical Software, 11(10), 1–17. http://www.jstatsoft.org/v11/i10/
Zeileis A (2006). Object-Oriented Computation of Sandwich Estimators, Journal of Statistical Software, 16(9), 1–16. http://www.jstatsoft.org/v16/i09/.
See Also
fUnitRoots
, urca
Examples
##---- ADF test on extended Nelson-Plosser data ----
##-- Data taken from package urca
data(npext, package="urca")
ADFt <- CADFtest(npext$gnpperca, max.lag.y=3, type="trend")
##---- CADF test on extended Nelson-Plosser data ----
data(npext, package="urca")
npext$unemrate <- exp(npext$unemploy) # compute unemployment rate
L <- ts(npext, start=1860) # time series of levels
D <- diff(L) # time series of diffs
S <- window(ts.intersect(L,D), start=1909) # select same sample as Hansen's
CADFt <- CADFtest(L.gnpperca~D.unemrate, data=S, max.lag.y=3,
kernel="Parzen", prewhite=FALSE)