llqr {BwQuant} | R Documentation |
Fitting a local linear quantile regression model
Description
Function that estimates the quantile regression function using a local linear kernel smoother.
Usage
llqr(x, y, tau, t, h)
Arguments
x |
numeric vector of |
y |
numeric vector of |
tau |
the quantile order where the regression function is to be estimated. It must be a number strictly between 0 and 1. |
t |
the values of |
h |
the bandwidth parameter. |
Value
A list with the following components:
x.values |
the given points at which the evaluation occurs. |
y.values |
the estimated values of the quantile regression function at the given |
Author(s)
Mercedes Conde-Amboage and Cesar Sanchez-Sellero.
References
Fan, J., Hu, T. C. and Truong, Y. K. (1994). Robust nonparametric function estimation. Scandinavian Journal of Statistics, 21, 433-446.
Yu, K. and Jones, M. C. (1998). Local linear quantile regression. Journal of the American Statistical Association, 93, 228-237.
See Also
The argument h
with the bandwidth parameter can be fixed to some arbitrary value or chosen by one of the procedures implemented in the functions bwCV
, bwPI
, bwRT
or bwYJ
.
Examples
set.seed(1234)
x=runif(100)
y=10*(x^4+x^2-x)+rexp(100)
tau=0.25
h=bwPI(x,y,tau)
t=seq(0,1,length=101)
m=llqr(x,y,tau,t,h)
plot(x,y)
lines(m$x.values,m$y.values)