pB {Bvalue} | R Documentation |
The B-Value Distribution
Description
This function gives the cumulative distribution function of the B-value.
Usage
pB(b, nu, delta = 0, S = 1, alpha = 0.05, type = c("marginal", "cond_NRej", "cond_Rej"))
Arguments
b |
vector of quantiles |
nu |
an integer, the degrees of freedom in the conventional t-test. |
delta |
a numeric value. Considering testing for difference of two population means, delta is the null value of the difference. Default is 0. |
S |
a numeric value. The standard error in the conventional t-test. |
alpha |
a numeric between 0 and 1. The Type I error rate aiming to control in the conventional t-test. |
type |
a character to specify the type of EEB to be calculated. |
Details
Consider a two-sample t-test setting with hypotheses
H_{0}:\delta=0 \quad \leftrightarrow \quad H_{1}:\delta\neq 0,
where \delta=\mu_{1}-\mu_{2}
is the difference of two population means. If the testing result is failure to reject the null, one cannot directly conclude equivalence of the two groups. In this case, an equivalence test is suggested by testing the hypotheses
H_{3}:|\delta|\geq\Delta \quad \leftrightarrow \quad H_{4}:|\delta|<\Delta,
where \Delta
is a pre-specified equivalence bound. A 100(1-2\alpha)\%
confidence interval is formulated, denoted as [L,U]
, to test for equivalence, where
L=\hat{\delta}-t_{\nu,1-\alpha}S, \quad U=\hat{\delta}+t_{\nu,1-\alpha}S,
\hat{\delta}
is the estimate of \delta
, t_{\nu,1-\alpha}
is the 100(1-\alpha)\%
quantile of a t-distribution with degrees of freedom \nu
, and S
is the standard error. We define the B-value as
B=\max\{|L|,|U|\}.
The cumulative distribution function of the B-value is defined under three conditions: (1) the marginal distribution (type = "marginal"
); (2) the conditional distribution given that one cannot reject H_{0}
in the conventional t-test (type = "cond_NRej"
); and (3) the conditional distribution given that H_{0}
is rejected in the conventional t-test (type = "cond_Rej"
).
Value
Gives the cumulative distribution function of the B-value.
Author(s)
Yi Zhao, Indiana University, <zhaoyi1026@gmail.com>
Brian Caffo, Johns Hopkins University, <bcaffo@gmail.com>
Joshua Ewen, Kennedy Krieger Institute and Johns Hopkins University, <ewen@kennedykrieger.org>
References
Zhao et al. (2019) "B-Value and Empirical Equivalence Bound: A New Procedure of Hypothesis Testing" <arXiv:1912.13084>
See Also
Examples
############################################
# An Example: demonstration of marginal/conditional distribution of the B-value
alpha<-0.05
delta<-0
n1=n2=n<-10
S<-0.325
nu<-n1+n2-2
# compare three types of B-value distributions
oldpar<-par(no.readonly=TRUE)
par(mar=c(6,5,2,2))
plot(c(0,2),c(0,1),type="n",xlab=expression(b),ylab=expression(F[B](b*~"|"*~C,H[0])),
cex.lab=1.25,cex.axis=1.25,cex.main=1.25)
abline(h=1,lty=1,lwd=2,col=8)
abline(h=0,lty=1,lwd=2,col=8)
curve(pB(x,nu=nu,delta=delta,S=S,alpha=alpha,type="marginal"),
lty=1,lwd=3,col=1,n=1000,from=0,to=20,add=TRUE)
curve(pB(x,nu=nu,delta=delta,S=S,alpha=alpha,type="cond_NRej"),
lty=2,lwd=3,col=2,n=1000,from=0,to=20,add=TRUE)
curve(pB(x,nu=nu,delta=delta,S=S,alpha=alpha,type="cond_Rej"),
lty=3,lwd=3,col=4,n=1000,from=0,to=20,add=TRUE)
par(fig=c(0,1,0,1),oma=c(0,0,0,0),mar=c(0,2,0,2),new=TRUE)
plot(0,0,type="n",bty="n",xaxt="n",yaxt="n")
legend("bottom",legend=c("marginal","conditional (not reject)","conditional (reject)"),
xpd=TRUE,horiz=TRUE,inset=c(0,0),col=c(1,2,4),lty=c(1,2,3),lwd=2,bty="n",cex=1.25)
par(oldpar)
############################################