FetchBuddle {Buddle} | R Documentation |
Predicting Classification and Regression.
Description
Yield prediction (softmax value or value) for regression and classification for given data based on the results of training.
Usage
FetchBuddle(X, lW, lb, lParam)
Arguments
X |
a matrix of real values which will be used for predicting classification or regression. |
lW |
a list of weight matrices obtained after training. |
lb |
a list of bias vectors obtained after training. |
lParam |
a list of parameters used for training. It includes: label, hiddenlayer, batch, drop, drop.ratio, lr, init.weight, activation, optim, type, rand.eff, distr, and disp. |
Value
A list of the following values:
- predicted
predicted real values (regression) or softmax values (classification).
- One.Hot.Encoding
one-hot encoding values of the predicted softmax values for classification. For regression, a zero matrix will be returned. To convert the one-hot encoding values to labels, use OneHot2Label().
References
[1] Geron, A. Hand-On Machine Learning with Scikit-Learn and TensorFlow. Sebastopol: O'Reilly, 2017. Print.
[2] Han, J., Pei, J, Kamber, M. Data Mining: Concepts and Techniques. New York: Elsevier, 2011. Print.
[3] Weilman, S. Deep Learning from Scratch. O'Reilly Media, 2019. Print.
See Also
CheckNonNumeric(), GetPrecision(), MakeConfusionMatrix(), OneHot2Label(), Split2TrainTest(), TrainBuddle()
Examples
### Using mnist data again
data(mnist_data)
X1 = mnist_data$Images ### X1: 100 x 784 matrix
Y1 = mnist_data$Labels ### Y1: 100 x 1 vector
############################# Train Buddle
lst = TrainBuddle(Y1, X1, train.ratio=0.6, arrange=TRUE, batch.size=10, total.iter = 100,
hiddenlayer=c(20, 10), batch.norm=TRUE, drop=TRUE,
drop.ratio=0.1, lr=0.1, init.weight=0.1,
activation=c("Relu","SoftPlus"), optim="AdaGrad",
type = "Classification", rand.eff=TRUE, distr = "Logistic", disp=TRUE)
lW = lst[[1]]
lb = lst[[2]]
lParam = lst[[3]]
X2 = matrix(rnorm(20*784,0,1), 20,784) ## Genderate a 20-by-784 matrix
lst = FetchBuddle(X2, lW, lb, lParam) ## Pass X2 to FetchBuddle for prediction