| summary.BsProb {BsMD} | R Documentation | 
Summary of Posterior Probabilities from Bayesian Screening
Description
Reduced printing method for class BsProb lists. Prints
posterior probabilities of factors and models from Bayesian screening
procedure.
Usage
    ## S3 method for class 'BsProb'
summary(object, nMod = 10, digits = 3, ...)
Arguments
object | 
 list.   | 
nMod | 
 integer. Number of the top ranked models to print.  | 
digits | 
 integer. Significant digits to use.  | 
... | 
 additional arguments passed to   | 
Value
The function prints out the marginal factors and models posterior probabilities. Returns invisible list with the components:
calc | 
 Numeric vector with basic calculation information.  | 
probabilities | 
 Data frame with the marginal posterior factor probabilities.  | 
models | 
 Data frame with the models posterior probabilities.  | 
Author(s)
Ernesto Barrios.
References
Box, G. E. P and R. D. Meyer (1986). "An Analysis for Unreplicated Fractional Factorials". Technometrics. Vol. 28. No. 1. pp. 11–18.
Box, G. E. P and R. D. Meyer (1993). "Finding the Active Factors in Fractionated Screening Experiments". Journal of Quality Technology. Vol. 25. No. 2. pp. 94–105.
See Also
BsProb, print.BsProb, plot.BsProb.
Examples
library(BsMD)
data(BM86.data,package="BsMD")
X <- as.matrix(BM86.data[,1:15])
y <- BM86.data["y1"]
# Using prior probability of p = 0.20, and k = 10 (gamma = 2.49)
drillAdvance.BsProb <- BsProb(X = X, y = y, blk = 0, mFac = 15, mInt = 1,
            p = 0.20, g = 2.49, ng = 1, nMod = 10)
plot(drillAdvance.BsProb)
summary(drillAdvance.BsProb)
# Using prior probability of p = 0.20, and a 5 <= k <= 15 (1.22 <= gamma <= 3.74)
drillAdvance.BsProbG <- BsProb(X = X, y = y, blk = 0, mFac = 15, mInt = 1,
            p = 0.25, g = c(1.22, 3.74), ng = 3, nMod = 10)
plot(drillAdvance.BsProbG)
summary(drillAdvance.BsProbG)