| print.BsProb {BsMD} | R Documentation |
Printing Posterior Probabilities from Bayesian Screening
Description
Printing method for lists of class BsProb. Prints the posterior
probabilities of factors and models from the Bayesian screening procedure.
Usage
## S3 method for class 'BsProb'
print(x, X = TRUE, resp = TRUE, factors = TRUE, models = TRUE,
nMod = 10, digits = 3, plt = FALSE, verbose = FALSE, ...)
Arguments
x |
list. Object of |
X |
logical. If |
resp |
logical. If |
factors |
logical. Marginal posterior probabilities are printed if |
models |
logical. If |
nMod |
integer. Number of the top ranked models to print. |
digits |
integer. Significant digits to use for printing. |
plt |
logical. Factor marginal probabilities are plotted if |
verbose |
logical. If |
... |
additional arguments passed to |
Value
The function prints out marginal factors and models posterior probabilities. Returns invisible list with the components:
calc |
numeric vector with general calculation information. |
probabilities |
Data frame with the marginal posterior factor probabilities. |
models |
Data frame with model the posterior probabilities. |
Author(s)
Ernesto Barrios.
References
Box, G. E. P and R. D. Meyer (1986). "An Analysis for Unreplicated Fractional Factorials". Technometrics. Vol. 28. No. 1. pp. 11–18.
Box, G. E. P and R. D. Meyer (1993). "Finding the Active Factors in Fractionated Screening Experiments". Journal of Quality Technology. Vol. 25. No. 2. pp. 94–105.
See Also
BsProb, summary.BsProb, plot.BsProb.
Examples
library(BsMD)
data(BM86.data,package="BsMD")
X <- as.matrix(BM86.data[,1:15])
y <- BM86.data["y1"]
# Using prior probability of p = 0.20, and k = 10 (gamma = 2.49)
drillAdvance.BsProb <- BsProb(X = X, y = y, blk = 0, mFac = 15, mInt = 1,
p = 0.20, g = 2.49, ng = 1, nMod = 10)
print(drillAdvance.BsProb)
plot(drillAdvance.BsProb)
# Using prior probability of p = 0.20, and a 5 <= k <= 15 (1.22 <= gamma <= 3.74)
drillAdvance.BsProbG <- BsProb(X = X, y = y, blk = 0, mFac = 15, mInt = 1,
p = 0.25, g = c(1.22, 3.74), ng = 3, nMod = 10)
print(drillAdvance.BsProbG, X = FALSE, resp = FALSE)
plot(drillAdvance.BsProbG)