plotVIMP {BoostMLR} | R Documentation |
Variable Importance (VIMP) plot
Description
Barplot displaying variable importance for the main effect.
Usage
plotVIMP(vimp_Object,
xvar.names = NULL,
cex.xlab = NULL,
ymaxlim = 0,
yminlim = 0,
main = "Variable Importance (%)",
col = grey(0.8),
cex.lab = 1.5,
ylbl = NULL,
legend_placement = NULL,
plot.it = TRUE,
path_saveplot = NULL,
Verbose = TRUE)
Arguments
vimp_Object |
List with number of elements equal to the number of response variables. |
xvar.names |
Names of the covariates. If NULL, names will be pulled from |
cex.xlab |
Magnification of the names of the covariates for the barplot. |
ymaxlim |
By default, we use the range of the vimp values for the barplot limit on the y-axis. If one wants to extend the limit, add the amount with which the limit will extend above the x-axis. |
yminlim |
Similar to |
main |
Main title for the plot. |
col |
Color of the plot. |
cex.lab |
Magnification of the x and y lables. |
ylbl |
Label for the y-axis. |
legend_placement |
Do you want name of the covariates on top of the each barplot? If so, use default setting; else set value on the negative direction of y-axis which arrange covariate name beneath the barplot. |
plot.it |
Should the VIMP plot be displayed? |
path_saveplot |
Provide the location where plot should be saved. By default the plot will be saved at temporary folder. |
Verbose |
Display the path where the plot is saved? |
Details
Barplot displaying VIMP for each response. Barplot will be save as pdf file in the working directory.
Author(s)
Amol Pande and Hemant Ishwaran
Examples
##-----------------------------------------------------------------
## VIMP plot for multivariate longitudinal response
##-----------------------------------------------------------------
# Simulate data involves 3 response and 4 covariates
dta <- simLong(n = 100, ntest = 100 ,N = 5, rho =.80, model = 1, q_x = 0,
q_y = 0,type = "corCompSym")
dtaL <- dta$dtaL
trn <- dta$trn
# Boosting call: Raw values of covariates, B-spline for time,
# no shrinkage, no estimate of rho and phi
boost.grow <- BoostMLR(x = dtaL$features[trn,], tm = dtaL$time[trn],
id = dtaL$id[trn], y = dtaL$y[trn,], M = 100, VarFlag = FALSE)
boost.pred <- predictBoostMLR(Object = boost.grow, x = dtaL$features[-trn,],
tm = dtaL$time[-trn], id = dtaL$id[-trn],
y = dtaL$y[-trn,], importance = TRUE)
# Plot VIMP
plotVIMP(vimp_Object = boost.pred$vimp,ymaxlim = 20,plot.it = FALSE)