dbivgeocure {BivGeo} | R Documentation |
Joint Probability Mass Function for the Basu-Dhar Bivariate Geometric Distribution in Presence of Cure Fraction
Description
This function computes the joint probability mass function of the Basu-Dhar bivariate geometric distribution assuming arbitrary parameter values in presence of cure fraction.
Usage
dbivgeocure(x, y, theta, phi11, log = FALSE)
Arguments
x |
matrix or vector containing the data. If x is a matrix then it is considered as x the first column and y the second column (y argument need be setted to NULL). Additional columns and y are ignored. |
y |
vector containing the data of y. It is used only if x is also a vector. Vectors x and y should be of equal length. |
theta |
vector (of length 3) containing values of the parameters |
phi11 |
real number containing the value of the cure fraction incidence parameter |
log |
logical argument for calculating the log probability or the probability function. The default value is FALSE. |
Details
The joint probability mass function for a random vector (X
, Y
) following a Basu-Dhar bivariate geometric distribution in presence of cure fraction could be written as:
P(X = x, Y = y) = \phi_{11}(\theta_{1}^{x - 1} \theta_{2}^{y - 1} \theta_{3}^{z_1} - \theta_{1}^{x} \theta_{2}^{y - 1} \theta_{3}^{z_2} - \theta_{1}^{x - 1} \theta_{2}^{y} \theta_{2}^{z_3} + \theta_{1}^{x} \theta_{2}^{y} \theta_{3}^{z_4})
where x,y > 0
are positive integers and z_1 = \max(x - 1, y - 1),z_2 = \max(x, y - 1), z_3 = \max(x - 1, y), z_4 = \max(x, y)
.
Value
dbivgeocure
gives the values of the probability mass function in presence of cure fraction.
Invalid arguments will return an error message.
Author(s)
Ricardo P. Oliveira rpuziol.oliveira@gmail.com
Jorge Alberto Achcar achcar@fmrp.usp.br
Source
dbivgeocure
is calculated directly from the definition.
References
Basu, A. P., & Dhar, S. K. (1995). Bivariate geometric distribution. Journal of Applied Statistical Science, 2, 1, 33-44.
Achcar, J. A., Davarzani, N., & Souza, R. M. (2016). Basu–Dhar bivariate geometric distribution in the presence of covariates and censored data: a Bayesian approach. Journal of Applied Statistics, 43, 9, 1636-1648.
de Oliveira, R. P., & Achcar, J. A. (2018). Basu-Dhar's bivariate geometric distribution in presence of censored data and covariates: some computational aspects. Electronic Journal of Applied Statistical Analysis, 11, 1, 108-136.
de Oliveira, R. P., Achcar, J. A., Peralta, D., & Mazucheli, J. (2018). Discrete and continuous bivariate lifetime models in presence of cure rate: a comparative study under Bayesian approach. Journal of Applied Statistics, 1-19.
See Also
Geometric
for the univariate geometric distribution.
Examples
# If log = FALSE:
dbivgeocure(x = 1, y = 2, theta = c(0.2, 0.4, 0.7), phi11 = 0.4, log = FALSE)
# [1] 0.064512
# If log = TRUE:
dbivgeocure(x = 1, y = 2, theta = c(0.2, 0.4, 0.7), phi11 = 0.4, log = TRUE)
# [1] -2.740904