cfbivgeo {BivGeo} | R Documentation |
Cross-factorial Moment for the Basu-Dhar Bivariate Geometric Distribution
Description
This function computes the cross-factorial moment for the Basu-Dhar bivariate geometric distribution assuming arbitrary parameter values.
Usage
cfbivgeo(theta)
Arguments
theta |
vector (of length 3) containing values of the parameters |
Details
The cross-factorial moment between X and Y, assuming the Basu-Dhar bivariate geometric distribution, is given by,
E[XY] = \frac{1 - \theta_1 \theta_2 \theta_{3}^2}{(1 - \theta_1\theta_3)(1 - \theta_2\theta_3)(1 - \theta_1 \theta_2 \theta_{3})}
Note that the cross-factorial moment is always positive.
Value
cfbivgeo
computes the cross-factorial moment for the Basu-Dhar bivariate geometric distribution for arbitrary parameter values.
Invalid arguments will return an error message.
Author(s)
Ricardo P. Oliveira rpuziol.oliveira@gmail.com
Jorge Alberto Achcar achcar@fmrp.usp.br
Source
cfbivgeo
is calculated directly from the definition.
References
Basu, A. P., & Dhar, S. K. (1995). Bivariate geometric distribution. Journal of Applied Statistical Science, 2, 1, 33-44.
Li, J., & Dhar, S. K. (2013). Modeling with bivariate geometric distributions. Communications in Statistics-Theory and Methods, 42, 2, 252-266.
Achcar, J. A., Davarzani, N., & Souza, R. M. (2016). Basu–Dhar bivariate geometric distribution in the presence of covariates and censored data: a Bayesian approach. Journal of Applied Statistics, 43, 9, 1636-1648.
de Oliveira, R. P., & Achcar, J. A. (2018). Basu-Dhar's bivariate geometric distribution in presence of censored data and covariates: some computational aspects. Electronic Journal of Applied Statistical Analysis, 11, 1, 108-136.
de Oliveira, R. P., Achcar, J. A., Peralta, D., & Mazucheli, J. (2018). Discrete and continuous bivariate lifetime models in presence of cure rate: a comparative study under Bayesian approach. Journal of Applied Statistics, 1-19.
Examples
cfbivgeo(theta = c(0.5, 0.5, 0.7))
# [1] 2.517483
cfbivgeo(theta = c(0.2, 0.5, 0.7))
# [1] 1.829303
cfbivgeo(theta = c(0.8, 0.9, 0.1))
# [1] 1.277864
cfbivgeo(theta = c(0.9, 0.9, 0.9))
# [1] 35.15246