ordisymbol {BiodiversityR} | R Documentation |
Add Other Graphical Items to Ordination Diagrams
Description
Functions to add some other graphical itmes to ordination diagrams than provided within vegan by ordihull
, ordispider
, ordiarrows
, ordisegments
, ordigrid
, ordiellipse
, ordicluster
and lines.spantree
.
Usage
ordisymbol(ordiplot, y, factor, col = 1, colors = TRUE, pchs = TRUE,
rainbow_hcl = TRUE, rainbow_hcl.c = 90, rainbow_hcl.l = 50,
rainbow = TRUE, heat.colors = FALSE, terrain.colors = FALSE,
topo.colors = FALSE, cm.colors = FALSE,
legend = TRUE, legend.x = "topleft", legend.ncol = 1, ...)
ordibubble(ordiplot,var,...)
ordicluster2(ordiplot, cluster, mingroups = 1, maxgroups = nrow(ordiplot$sites), ...)
ordinearest(ordiplot, dist,...)
ordivector(ordiplot, spec, lty=2,...)
Arguments
ordiplot |
An ordination graph created by |
y |
Environmental data frame. |
factor |
Variable of the environmental data frame that defines subsets to be given different symbols. |
var |
Continous variable of the environmental dataset or species from the community dataset. |
col |
Colour (as |
colors |
Apply different colours to different factor levels |
pchs |
Apply different symbols (plotting characters) to different factor levels (as in |
rainbow_hcl |
Use rainbow_hcl colours ( |
rainbow_hcl.c |
Set the chroma value |
rainbow_hcl.l |
Set the luminance value |
rainbow |
Use rainbow colours |
heat.colors |
Use heat colours |
terrain.colors |
Use terrain colours |
topo.colors |
Use topo colours |
cm.colors |
Use cm colours |
legend |
Add the legend. |
legend.x |
Location of the legend; see also |
legend.ncol |
the number of columns in which to set the legend items; see also |
cluster |
Cluster object. |
mingroups |
Minimum of clusters to be plotted. |
maxgroups |
Maximum of clusters to be plotted.. |
dist |
Distance matrix. |
spec |
Species name from the community dataset. |
lty |
Line type as specified for |
... |
Other arguments passed to functions |
Details
Function ordisymbol
plots different levels of the specified variable in different symbols and different colours. In case more than one colour palettes are selected, the last palette selected will be used.
Function ordibubble
draws bubble diagrams indicating the value of the specified continuous variable. Circles indicate positive values, squares indicate negative values.
Function ordicluster2
provides an alternative method of overlaying information from hierarchical clustering on an ordination diagram than provided by function ordicluster
. The method draws convex hulls around sites that are grouped into the same cluster. You can select the minimum and maximum number of clusters that are plotted (i.e. the range of clustering steps to be shown).
Function ordinearest
draws a vector from each site to the site that is nearest to it as determined from a distance matrix. When you combine the method with lines.spantree
using the same distance measure, then you can evaluate in part how the minimum spanning tree was constructed.
Function ordivector
draws a vector for the specified species on the ordination diagramme and draws perpendicular lines from each site to a line that connects the origin and the head of species vector. This method helps in the biplot interpretation of a species vector as described by Jongman, ter Braak and van Tongeren (1995).
Value
These functions add graphical items to an existing ordination diagram.
Author(s)
Roeland Kindt (World Agroforestry Centre) and Jari Oksanen (ordinearest
)
References
Jongman, R.H.G, ter Braak, C.J.F & van Tongeren, O.F.R. (1987). Data Analysis in Community and Landscape Ecology. Pudog, Wageningen.
Kindt, R. & Coe, R. (2005). Tree diversity analysis: A manual and software for common statistical methods for ecological and biodiversity studies.
https://www.worldagroforestry.org/output/tree-diversity-analysis
Examples
library(vegan)
data(dune)
data(dune.env)
Ordination.model1 <- rda(dune)
plot1 <- ordiplot(Ordination.model1, choices=c(1,2), scaling=2)
ordisymbol(plot1, dune.env, "Management", legend=TRUE,
legend.x="topleft", legend.ncol=1)
plot2 <- ordiplot(Ordination.model1, choices=c(1,2), scaling=1)
distmatrix <- vegdist(dune, method='bray')
cluster <- hclust(distmatrix, method='single')
ordicluster2(plot2, cluster)
ordinearest(plot2, distmatrix, col=2)
ordivector(plot2, "Agrostol", lty=2)