nnetrandom {BiodiversityR} | R Documentation |
Calculate the NNET Result with the Smallest Value from Various Random Starts
Description
This function provides the best solution from various calls to the nnet
feed-forward artificial neural networks function (nnet).
Usage
nnetrandom(formula,data,tries=10,leave.one.out=F,...)
Arguments
formula |
Formula as passed to |
data |
Data as passed to |
tries |
Number of calls to |
leave.one.out |
Calculate leave-one-out predictions. |
... |
Other arguments passed to |
Details
This function makes various calls to nnet
. If desired by the user, leave-one-out statistics are provided that report the prediction if one particular sample unit was not used for iterating the networks.
Value
The function returns the same components as nnet
, but adds the following components:
range |
Summary of the observed "values". |
tries |
Number of different attempts to iterate an ANN. |
CV |
Predicted class when not using the respective sample unit for iterating ANN. |
succesful |
Test whether leave-one-out statistics provided the same class as the original class. |
Author(s)
Roeland Kindt (World Agroforestry Centre)
Examples
## Not run:
data(faramea)
faramea <- na.omit(faramea)
faramea$presence <- as.numeric(faramea$Faramea.occidentalis > 0)
attach(faramea)
library(nnet)
result <- nnetrandom(presence ~ Elevation, data=faramea, size=2,
skip=FALSE, entropy=TRUE, trace=FALSE, maxit=1000, tries=100,
leave.one.out=FALSE)
summary(result)
result$fitted.values
result$value
result2 <- nnetrandom(presence ~ Elevation, data=faramea, size=2,
skip=FALSE, entropy=TRUE, trace=FALSE, maxit=1000, tries=50,
leave.one.out=TRUE)
result2$range
result2$CV
result2$successful
## End(Not run)