BinomialEMVS {BinaryEMVS} | R Documentation |
Variable Selection For Binary Data Using The EM Algorithm
Description
Conducts EMVS analysis
Usage
BinomialEMVS(y, x, type = "probit", epsilon = 5e-04, v0s = ifelse(type ==
"probit", 0.025, 5), nu.1 = ifelse(type == "probit", 100, 1000),
nu.gam = 1, lambda.var = 0.001, a = 1, b = ncol(x),
beta.initial = NULL, sigma.initial = 1, theta.inital = 0.5, temp = 1,
p = ncol(x), n = nrow(x), SDCD.length = 50)
Arguments
y |
responses in 0-1 coding |
x |
X matrix |
type |
probit or logit model |
epsilon |
tuning parameter |
v0s |
tuning parameter, can be vector |
nu.1 |
tuning parameter |
nu.gam |
tuning parameter |
lambda.var |
tuning parameter |
a |
tuning parameter |
b |
tuning parameter |
beta.initial |
starting values |
sigma.initial |
starting value |
theta.inital |
startng value |
temp |
not sure |
p |
not sure |
n |
not sure |
SDCD.length |
not sure |
Value
probs is posterior probabilities
Examples
#Generate data
set.seed(1)
n=25;p=500;pr=10;cor=.6
X=data.sim(n,p,pr,cor)
#Randomly generate related beta coefficnets from U(-1,1)
beta.Vec=rep(0,times=p)
beta.Vec[1:pr]=runif(pr,-1,1)
y=scale(X%*%beta.Vec+rnorm(n,0,sd=sqrt(3)),center=TRUE,scale=FALSE)
prob=1/(1+exp(-y))
y.bin=t(t(ifelse(rbinom(n,1,prob)>0,1,0)))
result.probit=BinomialEMVS(y=y.bin,x=X,type="probit")
result.logit=BinomialEMVS(y=y.bin,x=X,type="logit")
which(result.probit$posts>.5)
which(result.logit$posts>.5)
[Package BinaryEMVS version 0.1 Index]