cmat.star.BinOrdNN {BinOrdNonNor} | R Documentation |
Computes the intermediate correlation matrix
Description
The function computes the correlations of intermediate multivariate normal data prior to subsequent dichotomization (for binary variables), ordinalization (for ordinal variables), and transformation (for continuous variables)
Usage
cmat.star.BinOrdNN(plist, skew.vec, kurto.vec, no.bin, no.ord, no.NN, CorrMat)
Arguments
plist |
A list of probability vectors corresponding to each binary/ordinal variable. The i-th element of |
skew.vec |
The skewness vector for continuous variables. |
kurto.vec |
The kurtosis vector for continuous variables. |
no.bin |
Number of binary variables. |
no.ord |
Number of ordinal variables. |
no.NN |
Number of continuous variables. |
CorrMat |
The target correlation matrix which must be positive definite and within the valid limits. |
Value
An intermediate correlation of size (no.bin + no.ord + no.NN)*(no.bin + no.ord + no.NN)
See Also
validate.target.cormat.BinOrdNN
, IntermediateNonNor
, IntermediateONN
Examples
## Not run:
no.bin <- 1
no.ord <- 2
no.NN <- 4
q <- no.bin + no.ord + no.NN
set.seed(54321)
Sigma <- diag(q)
Sigma[lower.tri(Sigma)] <- runif((q*(q-1)/2),-0.4,0.4)
Sigma <- Sigma + t(Sigma)
diag(Sigma) <- 1
marginal <- list(0.3, cumsum(c(0.30, 0.40) ), cumsum(c(0.4, 0.2, 0.3) ) )
cmat.star <- cmat.star.BinOrdNN(plist=marginal, skew.vec=c(1,2,2,3),
kurto.vec=c(2,7,25,25),no.bin=1, no.ord=2, no.NN=4, CorrMat=Sigma)
## End(Not run)