jointly.generate.binary.normal {BinNor} | R Documentation |
Generates a mix of binary and normal data
Description
Generates multiple binary and normal variables simultaneously given marginal characteristics and association structures.
Usage
jointly.generate.binary.normal(no.rows, no.bin,
no.nor, prop.vec.bin = NULL, mean.vec.nor = NULL, var.nor = NULL,
sigma_star = NULL, corr.vec = NULL, corr.mat = NULL,
continue.with.warning = TRUE)
Arguments
no.rows |
Number of rows. |
no.bin |
Number of binary variables |
no.nor |
Number of normal variables |
prop.vec.bin |
Probability vector for binary variables |
mean.vec.nor |
Vector of means for normal variables |
var.nor |
Vector of variances for normal variables |
sigma_star |
Intermediate correlation matrix |
corr.vec |
Vector of elements below the diagonal of correlation matrix ordered columnwise |
corr.mat |
Specified correlation matrix |
continue.with.warning |
TRUE to proceed with the nearest positive definite |
Value
data |
A matrix of generated data. |
See Also
compute.sigma.star
, validation.corr
, validation.bin
, validation.nor
, nearPD
, simulation
, rmvnorm
Examples
no.rows=100
no.bin=2; no.nor=2
mean.vec.nor=c(3,1); var.nor=c(4,2)
prop.vec.bin=c(0.4,0.7)
corr.vec=c(0.16,0.04,0.38,0.14,0.47,0.68);
cmat = lower.tri.to.corr.mat(corr.vec,4)
sigma.star=compute.sigma.star(no.bin=2, no.nor=2, prop.vec.bin=c(0.4,0.7),
corr.mat=cmat)
mydata=jointly.generate.binary.normal(no.rows,no.bin,no.nor,prop.vec.bin,
mean.vec.nor,var.nor, sigma_star=sigma.star$sigma_star,
continue.with.warning=TRUE)
[Package BinNor version 2.3.3 Index]