lm2 {BiDimRegression} | R Documentation |
Fitting Bidimensional Regression Models
Description
lm2 is used to fit bidimensional linear regression models using Euclidean and Affine transformations following the approach by Tobler (1965).
Usage
lm2(formula, data, transformation)
Arguments
formula |
a symbolic description of the model to be fitted in the format |
data |
a data frame containing variables for the model. |
transformation |
the transformation to be used, either |
Value
lm2 returns an object of class "lm2". An object of class "lm" is a list containing at least the following components:
transformation |
string with the transformation type ( |
npredictors |
number of predictors used in the model: 4 for euclidean, 6 for affine, 8 for projective. |
df_model , df_residual |
degrees of freedom for the model and for the residuals |
transformation_matrix |
|
coeff |
transformation coefficients, with |
transformed_coeff |
|
fitted_values |
data frame containing fitted values for the original data set |
residuals |
data frame containing residuals for the original fit |
r.squared , adj.r.squared |
R-squared and adjusted R-squared. |
F , p.value |
F-statistics and the corresponding p-value, given the |
dAIC |
Akaike Information Criterion (AIC) difference between the regression model and the null model. A negative values indicates that the regression model is better. See Nakaya (1997). |
distortion_index |
Distortion index following Waterman and Gordon (1984), as adjusted by Friedman and Kohler (2003) |
lm |
an underlying linear model for |
formula |
formula, describing input and output columns |
data |
data used to fit the model |
Call |
function call information, incorporates the |
See Also
Examples
lm2euc <- lm2(depV1 + depV2 ~ indepV1 + indepV2, NakayaData, 'euclidean')
lm2aff <- lm2(depV1 + depV2 ~ indepV1 + indepV2, NakayaData, 'affine')
lm2prj <- lm2(depV1 + depV2 ~ indepV1 + indepV2, NakayaData, 'projective')
anova(lm2euc, lm2aff, lm2prj)
predict(lm2euc)
summary(lm2euc)