dfp {Bhat} | R Documentation |
Function minimization with box-constraints
Description
This Davidon-Fletcher-Powell optimization algorithm has been ‘hand-tuned’
for minimal setup configuration and for efficency. It uses an internal
logit-type transformation based on the pre-specified box-constraints.
Therefore, it usually does not require rescaling (see help for the R optim
function). dfp
automatically computes step sizes for each parameter
to operate with sufficient sensitivity in the functional output.
Performance is comparable to the BFGS algorithm in the R function
optim
. dfp
interfaces with newton
to ascertain
convergence, compute the eigenvalues of the Hessian, and provide 95%
confidence intervals when the function to be minimized is a negative
log-likelihood.
Usage
dfp(x, f, tol = 1e-05, nfcn = 0, ...)
Arguments
x |
a list with components 'label' (of mode character), 'est' (the parameter vector with the initial guess), 'low' (vector with lower bounds), and 'upp' (vector with upper bounds) |
f |
the function that is to be minimized over the parameter vector
defined by the list |
tol |
a tolerance used to determine when convergence should be indicated |
nfcn |
number of function calls |
... |
other parameters to be passed to 'f' |
Details
The dfp function minimizes a function f
over the parameters
specified in the input list x
. The algorithm is based on Fletcher's
"Switching Method" (Comp.J. 13,317 (1970))
the code has been 'transcribed' from Fortran source code into R
Value
list with the following components:
fmin |
the function value f at the minimum |
label |
the labels taken from list |
est |
a vector of the estimates at the minimum. dfp does not
overwrite |
status |
0 indicates convergence, 1 indicates non-convergence |
nfcn |
no. of function calls |
Note
This function is part of the Bhat exploration tool
Author(s)
E. Georg Luebeck (FHCRC)
References
Fletcher's Switching Method (Comp.J. 13,317, 1970)
See Also
optim, newton
, ftrf
,
btrf
, logit.hessian
Examples
# generate some Poisson counts on the fly
dose <- c(rep(0,50),rep(1,50),rep(5,50),rep(10,50))
data <- cbind(dose,rpois(200,20*(1+dose*.5*(1-dose*0.05))))
# neg. log-likelihood of Poisson model with 'linear-quadratic' mean:
lkh <- function (x) {
ds <- data[, 1]
y <- data[, 2]
g <- x[1] * (1 + ds * x[2] * (1 - x[3] * ds))
return(sum(g - y * log(g)))
}
# for example define
x <- list(label=c("a","b","c"),est=c(10.,10.,.01),low=c(0,0,0),upp=c(100,20,.1))
# call:
results <- dfp(x,f=lkh)