| besselJs {Bessel} | R Documentation | 
Bessel J() function Simple Series Representation
Description
Computes the modified Bessel J function, using one of its basic
definitions as an infinite series, e.g. A. & S., p.360, (9.1.10).  The
implementation is pure R, working for numeric,
complex, but also e.g., for objects of class
"mpfr" from package Rmpfr.
Usage
besselJs(x, nu, nterm = 800, log = FALSE,
         Ceps = if (isNum) 8e-16 else 2^(-x@.Data[[1]]@prec))
Arguments
| x | numeric or complex vector, or of another  | 
| nu | non-negative numeric (scalar). | 
| nterm | integer indicating the number of terms to be used.
Should be in the order of  | 
| log | logical indicating if the logarithm  | 
| Ceps | a relative error tolerance for checking if  | 
Value
a “numeric” (or complex or "mpfr")
vector of the same class and length as x.
Author(s)
Martin Maechler
References
Abramowitz, M., and Stegun, I. A. (1964–1972). Handbook of mathematical functions (NBS AMS series 55, U.S. Dept. of Commerce). https://personal.math.ubc.ca/~cbm/aands/page_360.htm
See Also
This package BesselJ(), base besselJ(), etc
Examples
stopifnot(all.equal(besselJs(1:10, 1), # our R code --> 4 warnings, for x = 4:7
                    besselJ (1:10, 1)))# internal C code w/ different algorithm
## Large 'nu' ...
x <- (0:20)/4
if(interactive()) op <- options(nwarnings = 999)
(bx <- besselJ(x, nu=200))# base R's -- gives 19 (mostly wrong) warnings about precision lost
## Visualize:
bj <- curve(besselJ(1, x), 1, 2^10, log="xy", n=1001,
            main=quote(J[nu](1)), xlab = quote(nu), xaxt="n", yaxt="n") # 50+ warnings
eaxis <- if(!requireNamespace("sfsmisc")) axis else sfsmisc::eaxis
eaxis(1, sub10 = 3); eaxis(2)
bj6 <- curve(besselJ(6, x), add=TRUE, n=1001, col=adjustcolor(2, 1/2), lwd=2)
plot(y~x, as.data.frame(bj6), log="x", type="l", col=2, lwd=2,
     main = quote(J[nu](6)), xlab = quote(nu), xaxt="n")
eaxis(1, sub10=3); abline(h=0, lty=3)
if(require("Rmpfr")) { ## Use high precision, notably large exponent range, numbers:
  Bx <- besselJs(mpfr(x, 64), nu=200)
  all.equal(Bx, bx, tol = 1e-15)# TRUE -- warnings were mostly wrong; specifically:
  cbind(bx, Bx)
  signif(asNumeric(1 - (bx/Bx)[19:21]), 4) # only [19] had lost accuracy
  ## With*out* mpfr numbers -- using log -- is accurate (here)
  lbx <- besselJs(     x,      nu=200, log=TRUE)
  lBx <- besselJs(mpfr(x, 64), nu=200, log=TRUE)
  cbind(x, lbx, lBx)
  stopifnot(all.equal(asNumeric(log(Bx)), lbx, tol=1e-15),
	    all.equal(lBx, lbx, tol=4e-16))
} # Rmpfr
if(interactive()) options(op) # reset 'nwarnings'