| besselIasym {Bessel} | R Documentation |
Asymptotic Expansion of Bessel I(x,nu) and K(x,nu) For Large x
Description
Compute Bessel function I_{\nu}(x)
and K_{\nu}(x)
for large x and small or moderate
\nu, using the asymptotic expansions (9.7.1) and (9.7.2), p.377-8 of
Abramowitz & Stegun, for x \to\infty, even valid for
complex x,
I_a(x) = exp(x) / \sqrt{2\pi x} \cdot f(x, a),
where
f(x,a) = 1 - \frac{\mu-1}{8x} + \frac{(\mu-1)(\mu-9)}{2! (8x)^2}
- \ldots,
and \mu = 4 a^2 and |arg(x)| < \pi/2.
Whereas besselIasym(x,a) computes a possibly exponentially scaled
and/or logged version of I_a(x),
besselI.ftrms returns the corresponding terms in the
series expansion of f(x,a) above.
Usage
besselIasym (x, nu, k.max = 10, expon.scaled = FALSE, log = FALSE)
besselKasym (x, nu, k.max = 10, expon.scaled = FALSE, log = FALSE)
besselI.ftrms(x, nu, K = 20)
Arguments
x |
numeric or complex (with real part) |
nu |
numeric; the order (maybe fractional!) of the corresponding Bessel function. |
k.max, K |
integer number of terms in the expansion. |
expon.scaled |
logical; if |
log |
logical; if TRUE, |
Details
Even though the reference (A. & S.) requires
|\arg z| < \pi/2 for I() and
|\arg z| < 3\pi/2 for K(),
where \arg(z) := Arg(z),
the zero-th order term seems correct also for negative (real) numbers.
Value
a numeric (or complex) vector of the same length as x.
Author(s)
Martin Maechler
References
Abramowitz, M., and Stegun, I. A. (1964, etc). Handbook of mathematical functions (NBS AMS series 55, U.S. Dept. of Commerce).
See Also
From this package Bessel() BesselI(); further,
besselI.nuAsym() which is useful when \nu is large
(as well); further base besselI, etc
Examples
x <- c(1:10, 20, 50, 100^(2:10))
nu <- c(1, 10, 20, 50, 100)
r <- lapply(c(0:4,10,20), function(k.)
sapply(nu, function(n.)
besselIasym(x, nu=n., k.max = k., log = TRUE)))
warnings()
try( # needs improvement in R [or a local workaround]
besselIasym(10000*(1+1i), nu=200, k.max=20, log=TRUE)
) # Error in log1p(-d) : unimplemented complex function