| evidence {Bergm} | R Documentation | 
Wrapper function for evidence estimation
Description
Function to estimate the evidence (marginal likelihood) with Chib and Jeliazkov's method or Power posteriors, based on the adjusted pseudolikelihood function.
Usage
evidence(evidence.method = c("CJ", "PP"), ...)
Arguments
evidence.method | 
 vector Method to estimate the marginal likelihood. Options are:   | 
... | 
 further arguments to be passed.
See   | 
References
Bouranis, L., Friel, N., & Maire, F. (2018). Bayesian model selection for exponential random graph models via adjusted pseudolikelihoods. Journal of Computational and Graphical Statistics, 27(3), 516-528. https://arxiv.org/abs/1706.06344
Examples
## Not run: 
# Load the florentine marriage network:
data(florentine)
                                                
# MCMC sampling and evidence estimation:
CJE <- evidence(evidence.method = "CJ",
                formula     = flomarriage ~ edges + kstar(2),
                main.iters  = 30000,
                burn.in     = 2000,
                aux.iters   = 1000,
                num.samples = 25000,
                V.proposal  = 2.5,
                ladder      = 100,
                seed        = 1)
                                   
# Posterior summaries:
summary(CJE)
# MCMC diagnostics plots:
plot(CJE)
    
# Log-evidence (marginal likelihood) estimate:
CJE$log.evidence
## End(Not run)
[Package Bergm version 5.0.7 Index]