exploreBic {BcDiag} | R Documentation |
The exploreBic function
Description
Provides exploratory plots for biclustered and clustered data.
Usage
exploreBic(dset, bres, gby ="genes", pfor ="mean", mname ="biclust", bnum =1,
fabia.thresZ=0.5,fabia.thresL=NULL)
Arguments
dset |
data matrix. |
bres |
bicluster result. |
gby |
dimension to plot; 'genes' or 'conditions'. |
pfor |
plot for 'mean', 'median', 'variance', 'mad', 'all', or 'quant' (quantile). |
mname |
method name; 'biclust', 'isa2', 'fabia' or 'bicare' |
bnum |
existing biclusters; '1','2'... |
fabia.thresZ |
Bicluster threshold for |
fabia.thresL |
Bicluster threshold for |
Details
The exploreBic function is mainly used for exploratory data analysis. It provides summary plots for mean, median, variance, MAD and quantile plot.
The exploreBic
function checks if the parameters are appropriately submitted and then identifies the biclusters submatrix and calculates its summary statistics. Finally, the results are displayed on the required plot.
Note that the "biclust"
option for mname
will also accept results from the packages iBBiG and rqubic.
Value
Summary plot will display according to the user specification.
Author(s)
Mengsteab Aregay mycs.zab@gmail.com
References
Van't Veer, L.J., Dai, H., van de Vijver, M.J., He, Y.D., Hart, A.A. et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer,Nature, 415, 530-536.
Hochreiter, S., Bodenhofer, U., Heusel, M.et al. (2010).FABIA: factor analysis for bicluster acquisition. Bioinformatices, 26, 1520-1527.
See Also
Examples
data(breastc)
# find bicluster using biclust package
library(biclust)
bic <- biclust(breastc,method=BCPlaid())
# Plot the mean of biclusterd and clustered genes parallely.
exploreBic(dset=breastc,bres=bic,gby="conditions",pfor="mean",mname="biclust")